Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; : e13738, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189673

RESUMO

Given the growing interest in the metabolic heterogeneity of hepatocellular carcinoma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using multi-omics combinations. A single-cell RNA sequencing dataset encompassing six major cell types was obtained for integrated analysis. The optimal subtypes were identified using cluster stratification and validated using spatial transcriptomics and fluorescent multiplex immunohistochemistry. Then, a combined index based meta-cluster was calculated to verify its prognostic significance using multi-omics data from public cohorts. Our study first depicted the metabolic heterogeneity landscape of non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes interpret the metabolic characteristics of PVTT formation and development. The combined index provided effective predictions of prognosis and immunotherapy responses. Patients with a higher combined index had a relatively poor prognosis (p <0.001). We also found metabolism of polyamines was a key metabolic pathway involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified ODC1 was significantly higher expressed in PVTT compared to normal tissue (p =0.03). Our findings revealed both consistency and heterogeneity in the metabolism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-associated fibroblasts and myeloid cells conduce to predict prognosis and guide treatment. This offers new directions for understanding disease development and immunotherapy responses.

2.
Med Oncol ; 40(12): 339, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875691

RESUMO

To investigate the role of neuropilin1 (Nrp1) in glucose metabolism and proliferation of hepatocellular carcinoma (HCC) cells and to analyze its mechanism of action. The CRISPR gene knockout technique was used to knock out the Nrp1 gene in two HCC cell lines. The effect of Nrp1 on the proliferation of HCC cells was assessed in the CCK8 assay and plate cloning assay. The expression levels of glucose consumption, lactate production, and essential proteins of the glycolytic pathway were detected to explore the effect of Nrp1 on glucose metabolism in HCC cells. Using CoCl2 to revert the expression of hypoxia inducible factor-1α (HIF-1α), the role of HIF-1α in the pro-HCC cell metabolism of Nrp1 were demonstrated. The protein synthesis inhibitor CHX and proteasome inhibitor MG-132 was used to analyze the molecular mechanism of action of Nrp1 on HIF-1α. The Kaplan-Meier method was used to calculate survival rates and plot survival curves. Based on the CCK8 assay and plate cloning assay, we found that Nrp1 knockout significantly inhibited the proliferation of HCC cells. Nrp1 inhibitor suppressed lactate production and glucose consumption in HCC cells. Knockout of Nrp1 decreased the expression of glycolytic pathway-related proteins and HIF-1α protein. Furthermore, by joint use of CoCl2 and NRP1 knockout, we confirmed that reverting HIF-1α expression could reverse the effect of Nrp1 knockout on HCC cell metabolism in vitro. Mechanistically, Nrp1 showed a close correlation with the stability of HIF-1α protein in protein stability assay. Finally, we revealed that high expression of Nrp1 in HCC tissues was associated with poor overall survival and disease-free survival of the patients. Nrp1 accelerates glycolysis and promotes proliferation of HCC by regulating HIF-1α protein stability and through the VEGF/Nrp1/HIF-1α positive feedback loop.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retroalimentação , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proliferação de Células , Glucose , Cobalto/farmacologia , Cobalto/metabolismo , Lactatos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA