Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Exp Clin Cancer Res ; 43(1): 152, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812060

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS: The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS: HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS: HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Homólogo 5 da Proteína Cromobox , Histona Desacetilase 1 , Fator de Transcrição STAT1 , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Homólogo 5 da Proteína Cromobox/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Fator de Transcrição STAT1/metabolismo
3.
J Periodontal Res ; 58(1): 155-164, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36451314

RESUMO

BACKGROUNDS: Periodontitis is an oral-bacteria-directed disease that occurs worldwide. Currently, periodontal pathogens are mostly determined using traditional culture techniques, next-generation sequencing, and microbiological screening system. In addition to the well-known and cultivatable periodontal bacteria, we aimed to discover a novel periodontal pathogen by using DNA sequencing and investigate its role in the progression of periodontitis. OBJECTIVE: This study identified pathogens from subgingival dental plaque in patients with periodontitis by using the Oxford Nanopore Technology (ONT) third-generation sequencing system and validated the impact of selected pathogen in periodontitis progression by ligature-implanted mice. METHODS: Twenty-five patients with periodontitis and 25 healthy controls were recruited in this study. Subgingival plaque samples were collected for metagenomic analysis. The ONT third-generation sequencing system was used to confirm the dominant bacteria. A mouse model with ligature implantation and bacterial injection verified the pathogenesis of periodontitis. Neutrophil infiltration and osteoclast activity were evaluated using immunohistochemistry and tartrate-resistant acid phosphatase assays in periodontal tissue. Gingival inflammation was evaluated using pro-inflammatory cytokines in gingival crevicular fluids. Alveolar bone destruction in the mice was evaluated using micro-computed tomography and hematoxylin and eosin staining. RESULTS: Scardovia wiggsiae (S. wiggsiae) was dominant in the subgingival plaque of the patients with periodontitis. S. wiggsiae significantly deteriorated ligature-induced neutrophil infiltration, osteoclast activation, alveolar bone destruction, and the secretion of interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α in the mouse model. CONCLUSION: Our metagenome results suggested that S. wiggsiae is a dominant flora in patients with periodontitis. In mice, the induction of neutrophil infiltration, proinflammatory cytokine secretion, osteoclast activation, and alveolar bone destruction further verified the pathogenic role of S. wiggsiae in the progress of periodontitis. Future studies investigating the metabolic interactions between S. wiggsiae and other periodontopathic bacteria are warranted.


Assuntos
Actinobacteria , Perda do Osso Alveolar , Placa Dentária , Periodontite , Camundongos , Animais , Microtomografia por Raio-X/efeitos adversos , Perda do Osso Alveolar/patologia , Periodontite/metabolismo , Bactérias , Placa Dentária/complicações
4.
Biomark Res ; 10(1): 69, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104718

RESUMO

Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN-stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.

5.
Cancer Cell Int ; 21(1): 411, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348730

RESUMO

BACKGROUND: Altered Plastin-3 (PLS3; an actin-binding protein) expression was associated with human carcinogenesis, including pancreatic ductal adenocarcinoma (PDA). This study first assessed differentially expressed genes (DEGs) and then bioinformatically and experimentally confirmed PLS3 to be able to predict PDA prognosis and distinguish PDA from diffuse large B-cell lymphoma. METHODS: This study screened multiple online databases and revealed DEGs among PDA, normal pancreas, diffuse large B-cell lymphoma (DLBCL), and normal lymph node tissues and then focused on PLS3. These DEGs were analyzed for Gene Ontology (GO) terms, Kaplan-Meier curves, and the log-rank test to characterize their association with PDA prognosis. The receiver operating characteristic curve (ROC) was plotted, and Spearman's tests were performed. Differential PLS3 expression in different tissue specimens (n = 30) was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: There were a great number of DEGs between PDA and lymph node, between PDA and DLBCL, and between PDA and normal pancreatic tissues. Five DEGs (NET1, KCNK1, MAL2, PLS1, and PLS3) were associated with poor overall survival of PDA patients, but only PLS3 was further verified by the R2 and ICGC datasets. The ROC analysis showed a high PLS3 AUC (area under the curve) value for PDA diagnosis, while PLS3 was able to distinguish PDA from DLBCL. The results of Spearman's analysis showed that PLS3 expression was associated with levels of KRT7, SPP1, and SPARC. Differential PLS3 expression in different tissue specimens was further validated by RT-qPCR. CONCLUSIONS: Altered PLS3 expression was useful in diagnosis and prognosis of PDA as well as to distinguish PDA from DLBCL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA