Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Psychiatry ; 84(5)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37471530

RESUMO

Objective: Attenuated niacin responses and changes in cytokine levels have been reported in schizophrenia. However, prior studies have typically focused on schizophrenia, and little is known about the association between niacin response and inflammatory imbalance in clinically high-risk psychosis (CHR). This study aimed to assess the niacin response to inflammatory imbalance for association with conversion to psychosis within 2 years.Methods: A prospective case-control study was performed to assess the niacin response and interleukin (IL)-1ß, IL-2, IL-6, IL-8, IL-10, and tumor necrosis factor-α levels in 60 CHR individuals and 60 age- and sex-matched healthy controls (HC) from May 2019 to December 2021. Participants with CHR were identified using the Structured Interview for Prodromal Syndromes. The niacin-induced responses were measured using laser Doppler flowmetry. From the dose-response curves, the log-transferred concentration of methylnicotinate required to elicit a half-maximal blood flow response (LogEC50) and maximal minus minimal blood flow response (Span) values were calculated for each subject. Serum cytokine levels were measured using enzyme-linked immunosorbent assay. Individuals with CHR were then divided into converters (CHR-C, n = 15) and non-converters (CHR-NC, n = 45) to psychosis based on their 2-year follow-up clinical status.Results: The CHR group exhibited significantly higher LogEC50 (t = 3.650, P < .001) and Span (t = 2.657, P = .009) values than the HC group. The CHR-C group exhibited a significantly shorter Span (t = 4.027, P < .001) than the CHR-NC group. The LogEC50 showed a trend toward significance (t = 1.875, P = .066). None of the cytokine levels were significant. The conversion outcome can therefore be predicted by applying LogEC50 (P = .049) and Span (P < .001). The regression model with variables of LogEC50, Span, family history, and scores of positive symptoms showed good discrimination of subsequent conversion to psychosis and achieved a classification accuracy of 91.7%. The decreased LogEC50 in the CHR-C group was significantly correlated with the increased IL-1ß/IL-10 ratio (Spearman ρ = -0.600, P = .018), but this correlation was nonsignificant in the CHR-NC group.Conclusions: Our findings indicate a significant association between niacin response and psychosis conversion outcomes in individuals with CHR. Compared with peripheral inflammatory cytokines, the niacin response can better predict conversion, although there may be an intersection between the two in biological mechanisms.


Assuntos
Niacina , Transtornos Psicóticos , Humanos , Interleucina-10 , Niacina/farmacologia , Estudos de Casos e Controles , Transtornos Psicóticos/diagnóstico , Citocinas , Sintomas Prodrômicos
2.
Chemphyschem ; 24(11): e202300033, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912200

RESUMO

The development of industry and the increase in population have caused energy shortages and environmental pollution problems. Developing clean and storable new energy is identified as a key way to solve the problems above. Hydrogen is viewed as the most potential energy carrier due to its high calorific value and pollution-free. To convert solar energy into hydrogen energy, three nickel-based catalysts, Ni(aps)(pys)2 (aps=2-amino-2-phenylacetic salicylaldehyde) (1), Ni(ads)(pys)2 (ads=aniline salicylaldehyde, pys=pyridine-2-thiolate) (2), Ni(acs)(pys)2 (acs=aniline 5-chlorosalicylaldehyde) (3), were synthesized and explored as photocatalysts for hydrogen production. A three-component photocatalytic system for hydrogen production was constructed using target complex as photocatalyst, triethanolamine (TEOA) as electron sacrificial agent and fluorescein (FL) as photosensitizer. Under the optimum conditions, about 1504 µmol of H2 can be obtained with 25 mg catalyst 2 after 3 hours of irradiation. Finally, the hydrogen-production mechanism was discussed by experimental and theoretical methods.

3.
ACS Appl Mater Interfaces ; 14(15): 17486-17499, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35389211

RESUMO

Understanding the nickel-based molecular catalyst structure and functional relationship is crucial for catalytic hydrogen production in aqueous solutions. Density functional theory (DFT) provides mature theoretical knowledge for efficient catalyst design, significantly reducing catalyst synthesis time and energy consumption. In the present work, three molecular catalysts, Ni(qbz)(pys)2 (qbz = 2-quinoline benzimidazole) (NQP 1), Ni(qbo)(pys)2 (qbo = 2-quinoline benzothiazole) (NQP 2), and Ni(pbz)(pys)2 (pbz = 4-chloro-2,2-pyridylbenzimidazole) (NQP 3) (pys = 2-mercaptopyridine), were designed and synthesized and exhibit a high performance for H2 generation in aqueous solution with a lamp (λ ≥ 400 nm) under visible light irradiation. Under the optimal conditions, a H2 evolution rate as high as 1190 µmol h-1 can be obtained over 25 mg of NQP 1 with the best catalytic performance. DFT has been adopted in this study to unveil the relationship between the ligand qbz and catalyst NQP 1─an efficient step in the design of catalysts with an excellent catalytic performance. We show that, in addition to the presence of the triphenyl ring increasing the overall electron density, rapid electron transfer (ET) from excited fluorescein (Fl) to NQP 1 significantly improves the chance of photogenerated electrons transferring to the active site, ultimately increasing the catalytic activity for H2 production. This work on understanding the correlation between structures and properties of complexes provides a new idea for manufacturing high-performance photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA