Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
BMC Cancer ; 24(1): 869, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030523

RESUMO

CD8+T cells secreting granzyme A (GZMA) can induce pyroptosis in tumor cells by effectively cleaving gasdermin B (GSDMB), which is stimulated by interferon-γ (IFN-γ). However, the interaction between GZMA-expressing CD8+T cells and GSDMB-expressing tumor cells in colon cancer remains poorly understood. Our research employed multi-color immunohistochemistry (mIHC) staining and integrated clinical data to explore the spatial distribution and clinical relevance of GZMA- and IFN-γ-expressing CD8+ tumor-infiltrating lymphocytes (TILs), as well as GSDMB-expressing CK+ cells, within the tumor microenvironment (TME) of human colon cancer samples. Additionally, we utilizing single-cell RNA sequencing (scRNA-seq) data to examine the functional dynamics and interactions among these cell populations. scRNA-seq analysis of colorectal cancer (CRC) tissues revealed that CD8+TILs co-expressed GZMA and IFN-γ, but not other cell types. Our mIHC staining results indicated that a significant reduction in the infiltration of GZMA+IFN-γ+CD8+TILs in colon cancer patients (P < 0.01). Functional analysis results indicated that GZMA+IFN-γ+CD8+TILs demonstrated enhanced activation and effector functions compared to other CD8+TIL subsets. Furthermore, GSDMB-expressing CK+ cells exhibited augmented immunogenicity. Correlation analysis highlighted a positive association between GSDMB+CK+ cells and GZMA+IFN-γ+CD8+TILs (r = 0.221, P = 0.033). Analysis of cell-cell interactions further showed that these interactions were mediated by IFN-γ and transforming growth factor-ß (TGF-ß), the co-stimulatory molecule ICOS, and immune checkpoint molecules TIGIT and TIM-3. These findings suggested that GZMA+IFN-γ+CD8+TILs modulating GSDMB-expressing tumor cells, significantly impacted the immune microenvironment and patients' prognosis in colon cancer. By elucidating these mechanisms, our present study aims to provide novel insights for the advancement of immunotherapeutic strategies in colon cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias do Colo , Granzimas , Interferon gama , Linfócitos do Interstício Tumoral , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Granzimas/metabolismo , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Masculino , Feminino , Análise de Célula Única
2.
Spine J ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942298

RESUMO

BACKGROUND CONTEXT: Extreme Lateral Interbody Fusion (XLIF) has been established as an effective treatment for degenerative disorders of the lumbar spine. Nevertheless, there is a potential risk of lumbar plexus damage associated with XLIF, especially during surgeries at the L4-5 segment. Diffusion Tensor Imaging (DTI) evaluates the directional diffusion of water molecules in tissue, providing a more intricate depiction of internal tissue microstructure compared to conventional MRI techniques. The capability of DTI sequences to elucidate the 3-dimensional interplay between lumbar nerve pathways and adjacent musculoskeletal structures, potentially reducing the incidence of nerve injury complications related to XLIF, remains to be established. PURPOSE: This study evaluates the effectiveness of preoperative Diffusion Tensor Imaging (DTI) in reducing neurological complications after Extreme Lateral Interbody Fusion (XLIF) surgeries at the L4-5 level, focusing on the interaction between lumbar nerves and the psoas major muscle. STUDY DESIGN: Retrospective case-control study. PATIENT SAMPLE: The study included 128 patients undergoing XLIF surgery for degenerative disorders at the L4-5 segment: 68 in the traditional group and 62 in the DTI group. OUTCOME MEASURES: The study assessed Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI) scores, along with complication rates. It also documented psoas major muscle morphology and its correlation with nerve pathways. METHODS: A retrospective analysis of 128 patients undergoing XLIF surgery for degenerative disorders at the L4-5 segment between February 2020 and August 2022 was conducted. The cohort was divided into a traditional group (68 patients) receiving presurgery MRI scans to identify surgical entry points at the intervertebral space midpoint (Zones II-III junction) and a DTI group (62 patients) who additionally underwent preoperative DTI to customize entry points. The study evaluated VAS and ODI scores, complication rates, psoas major muscle morphology, and its interaction with nerve pathways. RESULTS: The traditional group uniformly chose the Zone II-III junction for entry. In contrast, the DTI group's entry points varied. Postoperative follow-up revealed significant improvements in VAS and ODI scores in both groups. However, the DTI group experienced fewer immediate postoperative complications such as thigh pain, numbness, and motor disturbances. The study also noted a ventral shift in nerve positioning in patients with elevated psoas muscles. CONCLUSIONS: Preoperative DTI effectively maps the relationship between the psoas major muscle and lumbar nerves. Tailoring surgical entry points based on DTI results significantly reduces the risk of nerve damage in XLIF surgeries. The study underscores the importance of recognizing variability in lumbar nerve pathways due to differing psoas muscle morphologies, highlighting a higher risk of nerve injury in patients with elevated psoas muscles during XLIF procedures.

3.
J Transl Med ; 22(1): 510, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802900

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a highly lethal form of lung cancer. Despite advancements in treatments, managing LUAD is still challenging due to its aggressive behavior. Recent studies indicate that various molecular pathways, including the dysregulation of ferredoxin 1 (FDX1), play roles in LUAD progression. FDX1, a crucial protein in cellular redox reactions and energy metabolism, has been linked to several cancers. However, its exact role in the development of LUAD is not yet fully understood. METHODS: We investigated the role of ferredoxin 1 (FDX1) in LUAD progression through analysis of its expression in LUAD tissues and its impact on patient survival. Functional assays were performed to assess the effects of FDX1 overexpression on LUAD cell proliferation, migration, and invasion. A xenograft model was employed to evaluate the tumorigenesis potential of LUAD cells with FDX1 overexpression. Mechanistic insights into FDX1 regulation were gained through depletion experiments targeting the G protein-regulated inducer of neurite outgrowth 2 (GPRIN2)/PI3K signaling pathway. RESULTS: FDX1 expression was down-regulated in LUAD tissues, correlating with shorter patient survival. Overexpression of FDX1 suppressed LUAD cell proliferation, migration, and invasion in vitro, and inhibited tumorigenesis in vivo. Mechanistically, the GPRIN2/PI3K signaling pathway was implicated in FDX1 regulation, as depletion of GPRIN2 reversed the effects of FDX1 overexpression on cellular functions. CONCLUSIONS: Our findings highlight FDX1 as a potential tumor suppressor in LUAD, acting through modulation of the GPRIN2/PI3K signaling pathway. These results suggest FDX1 as a promising therapeutic target for LUAD treatment, warranting further investigation into its clinical relevance.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Ferredoxinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
4.
Fitoterapia ; 174: 105872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417681

RESUMO

A total of 19 resveratrol derivatives, including 12 imines and 7 amines, were synthesized, among which compounds 1, 5, 6, 7', 11', and 13 are new compounds. The anti-inflammatory and antitumor activities of these compounds were evaluated in vitro. The results revealed that compounds 1, 6, 8', 12, and 12' exhibited significant inhibitory effects (> 50%) on NO production at the concentration of 10 µM and their NO production inhibitory activities have a significant concentration-dependent ability. Additionally, compounds 8' and 12' showed promising COX-2 inhibitory activity, and the molecular docking analysis indicated their stable binding to multiple amino acid residues within the active pocket of COX-2 through hydrogen bonding. Moreover, compound 12' exhibited inhibitory effects on various tumor cell lines and induced apoptosis in MCF-7 breast cancer cells, which was not observed with resveratrol alone. Therefore, the N-substituted structural modification of resveratrol would have possibly enhanced the bioactivity of resveratrol and facilitated its application.


Assuntos
Antineoplásicos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Resveratrol/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Desenho de Fármacos
5.
Spine J ; 24(6): 1109-1120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211901

RESUMO

BACKGROUND CONTEXT: There is no established small animal approach model for the strict simulation of lateral lumbar interbody fusion (LLIF) surgery. PURPOSE: This study aims to establish a reliable LLIF rabbit model that strictly simulates the procedure and to preliminarily evaluate the differences in fusion outcomes with different graft materials. STUDY DESIGN: A controlled laboratory. METHODS: Fifty-four 4-month-old white New Zealand female and male rabbits were selected and divided into five groups: Group A (dissection group) consisted of 9 rabbits, Group B (normal approach group) consisted of 9 rabbits, Group C (autogenous iliac bone group) consisted of 12 rabbits, Group D (BMP-2 carrier material group) consisted of 12 rabbits, and Group E (allograft bone group) consisted of 12 rabbits. Based on data from Group A, a novel titanium metal fusion device was designed. Postoperatively, at the 12-week mark, manual palpation was employed to compare the interbody fusion status among Groups B, C, D, and E. Specimens from Groups C, D, and E were subjected to Micro-CT scanning to compare various parameters such as trabecular bone volume (BV), bone volume fraction (BV/TV, BVF), and bone surface area (BS). Furthermore, a tissue histopathological examination was performed to observe the structure and morphology of newly formed bone within the fusion mass as well as the remodeling of the graft in each group. RESULTS: Based on the measurements obtained from the dissection group, we designed a U-shaped interbody fusion device with dimensions of 10 mm in length, 2.5 mm in width, and 1.3 mm in height. In Group B, 9 cases exhibited intervertebral mobility. In Group C, 1 case showed nonfusion. In Group D, all cases achieved fusion. In Group E, 4 cases did not achieve fusion. Additionally, the Micro-CT results showed that the interbody fusion index scores were 4.64±0.50 in Group C, 4.33±0.65 in Group D, and 3.36±0.81 in Group E. There was no statistically significant difference in fusion index scores between Groups C and D (p=.853). Notably, Groups C and D had higher scores than Group E (p<.001). The trabecular bone volume (BV) in Groups C and D also showed no significant difference but was significantly higher than in Group E (p<.001). Furthermore, the histopathological results revealed that the specimens from Group E had less newly formed cartilage and bone compared to Groups C and D. CONCLUSIONS: This study successfully established a strict simulation of the clinical LLIF procedure in a rabbit model. Moreso, we conducted a preliminary validation indicating that the BMP-2 carrier material achieved interbody fusion outcomes similar to autogenous iliac bone. CLINICAL SIGNIFICANCE: The findings of this investigation from animal models provide a theoretical basis for the clinical use of BMP-2 to promote early spinal fusion in LLIF procedures. Importantly, the study provides a small animal model foundation for research related to LLIF surgery.


Assuntos
Transplante Ósseo , Vértebras Lombares , Fusão Vertebral , Titânio , Animais , Coelhos , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Feminino , Vértebras Lombares/cirurgia , Masculino , Transplante Ósseo/métodos , Proteína Morfogenética Óssea 2 , Modelos Animais , Microtomografia por Raio-X
6.
Arthritis Res Ther ; 25(1): 249, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124066

RESUMO

OBJECTIVE: Synovial inflammation, which precedes other pathological changes in osteoarthritis (OA), is primarily initiated by activation and M1 polarization of macrophages. While macrophages play a pivotal role in the inflammatory process of OA, the mechanisms underlying their activation and polarization remain incompletely elucidated. This study aims to investigate the role of NOD2 as a reciprocal modulator of HMGB1/TLR4 signaling in macrophage activation and polarization during OA pathogenesis. DESIGN: We examined NOD2 expression in the synovium and determined the impact of NOD2 on macrophage activation and polarization by knockdown and overexpression models in vitro. Paracrine effect of macrophages on fibroblast-like synoviocytes (FLS) and chondrocytes was evaluated under conditions of NOD2 overexpression. Additionally, the in vivo effect of NOD2 was assessed using collagenase VII induced OA model in mice. RESULTS: Expression of NOD2 was elevated in osteoarthritic synovium. In vitro experiments demonstrated that NOD2 serves as a negative regulator of HMGB1/TLR4 signaling pathway. Furthermore, NOD2 overexpression hampered the inflammatory paracrine effect of macrophages on FLS and chondrocytes. In vivo experiments revealed that NOD2 overexpression mitigated OA in mice. CONCLUSIONS: Supported by convincing evidence on the inhibitory role of NOD2 in modulating the activation and M1 polarization of synovial macrophages, this study provided novel insights into the involvement of innate immunity in OA pathogenesis and highlighted NOD2 as a potential target for the prevention and treatment of OA.


Assuntos
Proteína HMGB1 , Osteoartrite , Animais , Camundongos , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Receptor 4 Toll-Like/metabolismo
7.
Mikrochim Acta ; 190(8): 284, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417992

RESUMO

A spiral interdigitated MXene-assisted field effect transistor (SiMFETs) was proposed for determination of IL-6 in patients with kidney transplantation infection. Our SiMFETs demonstrated enhanced IL-6 detection range of 10 fg/mL-100 ng/mL due to the combination of optimized transistor's structure and semiconducting nanocomposites. Specifically, on one hand, MXene-based field effect transistor drastically amplified the amperometric signal for determination of IL-6; on the other hand, the multiple spiral structure of interdigitated drain-source architecture improved the transconductance of FET biosensor. The developed SiMFETs biosensor demonstrated satisfactory stability for 2 months, and favorable reproducibility and selectivity against other biochemical interferences. The SiMFETs biosensor exhibited acceptable correlation coefficient (R2=0.955) in quantification of clinical biosamples. The sensor successfully distinguished the infected patients from the health control with enhanced AUC of 0.939 (sensitivity of 91.7%, specificity of 86.7%). Those merits introduced here may pave an alternative strategy for transistor-based biosensor in point-of-care clinic applications.


Assuntos
Técnicas Biossensoriais , Transplante de Rim , Humanos , Interleucina-6 , Reprodutibilidade dos Testes
8.
Biomaterials ; 301: 122234, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421671

RESUMO

Understanding the biocompatibility of biomaterials is a prerequisite for the prediction of its clinical application, and the present assessments mainly rely on in vitro cell culture and in situ histopathology. However, remote organs responses after biomaterials implantation is unclear. Here, by leveraging body-wide-transcriptomics data, we performed in-depth systems analysis of biomaterials - remote organs crosstalk after abdominal implantation of polypropylene and silk fibroin using a rodent model, demonstrating local implantation caused remote organs responses dominated by acute-phase responses, immune system responses and lipid metabolism disorders. Of note, liver function was specially disturbed, defined as hepatic lipid deposition. Combining flow cytometry analyses and liver monocyte recruitment inhibition experiments, we proved that blood derived monocyte-derived macrophages in the liver underlying the mechanism of abnormal lipid deposition induced by local biomaterials implantation. Moreover, from the perspective of temporality, the remote organs responses and liver lipid deposition of silk fibroin group faded away with biomaterial degradation and restored to normal at end, which highlighted its superiority of degradability. These findings were further indirectly evidenced by human blood biochemical ALT and AST examination from 141 clinical cases of hernia repair using silk fibroin mesh and polypropylene mesh. In conclusion, this study provided new insights on the crosstalk between local biomaterial implants and remote organs, which is of help for future selecting and evaluating biomaterial implants with the consideration of whole-body response.


Assuntos
Materiais Biocompatíveis , Fibroínas , Humanos , Polipropilenos , Macrófagos/metabolismo , Fígado/metabolismo , Lipídeos , Seda
9.
Stem Cells Dev ; 32(13-14): 365-378, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37051687

RESUMO

Articular cartilage injury is common in various conditions, including osteoarthritis, rheumatic diseases, and trauma. Current treatments for cartilage injury fail to completely regenerate the damaged cartilage. Mesenchymal stromal cells (MSCs) have emerged as potential candidates for cartilage regeneration. However, MSCs exhibit hypertrophic differentiation, and their chondrogenic ability is reduced in an inflammatory environment. In recent years, genetic modification has been proposed for optimizing MSC-based therapies, some of which are expected to enter clinical trials. This review summarizes recent research findings and developments in genetic engineering strategies to enhance stem cell-based therapy for cartilage regeneration. We also discuss the mechanisms of biofunctions of MSCs in cartilage regeneration and outline the efficacy and safety of the different genetic modification strategies, including viral and nonviral delivery transduction. Finally, we highlight the major challenges and prospects for clinical translation of genetically modified MSCs.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Diferenciação Celular/genética , Condrogênese/genética
10.
J Transl Med ; 21(1): 199, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927819

RESUMO

BACKGROUND: Increased circulating uric acid (UA) concentration may disrupt cardiac function in heart failure patients, but the specific mechanism remains unclear. Here, we postulate that hyperuremia induces sterol regulatory element binding protein 1 (SREBP1), which in turn activate hepatic fatty acid biosynthesis response, leading to cardiac dysfunction. METHODS AND RESULTS: Increased circulating uric acid was observed in heart failure patients and inversely correlated to cardiac function. Besides, uric acid correlated to circulating lipids profile based on metabolomics in heart failure patients. Using cultured human hepatoellular carcinomas (HepG2) and Tg(myl7:egfp) zebrafish, we demonstrated that UA regulated fatty acid synthase (FASN) via SREBP1 signaling pathway, leading to FFA accumulation and impaired energy metabolism, which could be rescued via SREBP1 knockdown. In ISO treated zebrafish, UA aggravated heart failure via increased cardiovascular cavity size, decreased heart beats, pericardial edema and long-stretched heart deformation. CONCLUSIONS: Our findings suggest that UA-SREBP1-FASN signaling exacerbates cardiac dysfunction during FFA accumulation. Identification of this mechanism may help in treatment and prevention of heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , Humanos , Ácido Úrico , Peixe-Zebra/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/complicações
11.
Cell Commun Signal ; 21(1): 15, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691073

RESUMO

Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Humanos , Feminino , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
12.
Am J Transplant ; 23(8): 1264-1267, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695695

RESUMO

En bloc kidney transplantation (EBKT) to adults from preterm neonates following donation after circulatory death has not been described in the literature. We report 2 successful cases of EBKT from preterm neonatal donation after circulatory death donors weighing <1.2 kg to adult recipients. The first case was a preterm female infant born at 29 weeks' gestational age, weighing 1.07 kg. The recipient was a 34-year-old woman weighing 75 kg. At the 9-month follow-up, the patient demonstrated excellent graft function with a creatinine concentration of 1.48 mg/dL. The second donor was a preterm female infant born at 29 weeks and 5 days' gestation, weighing 1.17 kg. The recipient was a 25-year-old woman weighing 46 kg. By 5 months post surgery, the serum creatinine level had gradually decreased to 1.47 mg/dL. In our experience, EBKT from preterm neonates <30 weeks' gestation and weighing <1.2 kg has demonstrated acceptable short- to medium-term results.


Assuntos
Transplante de Rim , Lactente , Recém-Nascido , Adulto , Humanos , Feminino , Sobrevivência de Enxerto , Estudos Retrospectivos , Doadores de Tecidos , Creatinina
13.
Cancer Med ; 12(3): 3079-3088, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073670

RESUMO

OBJECTIVE: The prognostic factors for patients with epithelial sarcoma remain unclear. The study aims to develop a practical clinical nomogram that predicts prognosis in patients with ES using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS: We extracted clinical data from 2004 to 2015 from the SEER database about patients with ES. All patients were randomly divided into training cohort and validation cohort. Kaplan-Meier analyses were used to compare outcomes between different subgroups. In order to estimate the chance of survival for patients with ES, we developed a nomogram. Nomogram performance was evaluated by discrimination and calibration. Additionally, an analysis of decision curves was conducted to evaluate the clinical usefulness of this newly developed model. RESULTS: In the primary cohort,320 met the inclusion criteria to be entered into this study. The median OS was 66.000 months (range 34.704 to 94.296 months), and the 1-, 3-, and 5-year OS rates were 70.7%, 56.1%, and 50.4%, respectively. For the validation cohort, we studied 136 consecutive patients. Age, primary site, grade, AJCC (American Joint Committee on Cancer) T, AJCC M, and surgery were included in the nomogram. The C-index values for the training set and validation set were 0.817 and 0.832, respectively. The calibration plots showed good agreement between the prediction and the observation. Based on the clinical decision curve, the model has a good clinical net benefit for ES patients. CONCLUSIONS: It is the first study that developed an effective survival prediction model for patients with ES. Using this nomogram can assist in clinical decision-making as it has satisfactory accuracy. Even so, additional external validation is needed.


Assuntos
Nomogramas , Sarcoma , Humanos , Prognóstico , Calibragem , Tomada de Decisão Clínica , Programa de SEER , Estadiamento de Neoplasias
14.
Front Cardiovasc Med ; 9: 838488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711379

RESUMO

Background: Cardiotoxicity related to immune checkpoint inhibitors (ICIs) is a rare but potentially lethal. In ICI-associated adverse events, evidence of cardiotoxicity and clinical predictive factors related to ICI is lacking. Here, we aim to assess the incidence and predictive factors of cardiotoxicity related to ICIs in real-world practice. Objective: We retrospectively analyzed consecutive patients who received PD-1 or PD-L1 at the First Affiliated Hospital of Xi'an Jiaotong University. Clinical characteristics and cardiac lesion markers were collected both at baseline and during longitudinal follow-up from the Biobank database. Follow-up CKMB and NT-proBNP levels and ratios were then evaluated. Results: A total of 2,304 patients with either PD-1 or PDL-1 utilization between August 2018 and April 2021 were collected. The average age was 59.44 ± 11.45 among PD-1 inhibitor utilizer and 58.97 ± 12.16 among PDL-1 inhibitor utilizer. The baseline creatine kinase isoenzyme MB (CKMB) levels were 17 ± 19 U/L in PD-1 inhibitor users and 17 ± 23 U/L in PDL-1 inhibitor users. Majority of patients were male, with advanced stage cancer, and received ICIs as second-line therapy. The longitudinal change of cardiac enzymes and NT-pro BNP were collected. Cardiac lesion as defined by three times increase of CKMB happens in only minority of patients receiving ICIs therapy. It is also identified that increased CKMB happened in PD-1 inhibitor groups, but not PDL-1 inhibitor groups. Conclusion: We evaluated the profile of cardiotoxicities caused by ICIs based on real-world experience. The cardiac lesion markers are generally unaltered, but it appears that the increased CKMB happened in PD-1 inhibitor groups, but not PDL-1 inhibitor groups.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35564879

RESUMO

Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophication, and light radiation plays a critical role in the succession of species. Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured and co-cultured to explore algal responses under different nutrient regimes. Comparisons were made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative stresses, and negative effects on the photosynthesis and growth of three species under normal growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS) production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis, etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including the lower sensitivity and better self-repair efficiency. In addition to stable µmax in PAR ad UV-B treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated waters with severer eutrophication.


Assuntos
Chlorella , Microcystis , Chlorella/fisiologia , Matriz Extracelular de Substâncias Poliméricas , Proliferação Nociva de Algas , Nutrientes , Fotossíntese , Raios Ultravioleta
16.
Cell Stem Cell ; 29(5): 776-794.e13, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523140

RESUMO

Human cholangiocyte organoids show great promise for regenerative therapies and in vitro modeling of bile duct development and diseases. However, the cystic organoids lack the branching morphology of intrahepatic bile ducts (IHBDs). Here, we report establishing human branching cholangiocyte organoid (BRCO) cultures. BRCOs self-organize into complex tubular structures resembling the IHBD architecture. Single-cell transcriptomics and functional analysis showed high similarity to primary cholangiocytes, and importantly, the branching growth mimics aspects of tubular development and is dependent on JAG1/NOTCH2 signaling. When applied to cholangiocarcinoma tumor organoids, the morphology changes to an in vitro morphology like primary tumors. Moreover, these branching cholangiocarcinoma organoids (BRCCAOs) better match the transcriptomic profile of primary tumors and showed increased chemoresistance to gemcitabine and cisplatin. In conclusion, BRCOs recapitulate a complex process of branching morphogenesis in vitro. This provides an improved model to study tubular formation, bile duct functionality, and associated biliary diseases.


Assuntos
Colangiocarcinoma , Organoides , Ductos Biliares , Células Epiteliais , Humanos , Transcriptoma
17.
Dis Markers ; 2022: 7267937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502303

RESUMO

Background: Acute myocardial infarction (AMI), as well as its long-term and short-term complications, is known to present with high morbidity and mortality. Cardiac function deterioration and ventricular remodelling after AMI are known to be correlated to worse long-term outcomes. However, the underlying mechanism remains elusive and there is a shortage of serum prediction markers. This study investigates the relationship between in-hospital Cystatin C (CysC) and cardiac function and subsequent prognosis among AMI patients. Research Design and Methods. We measured admission CysC and cardiac function parameters, including ejection fraction (EF) and pro-BNP value in 5956 patients diagnosed with AMI. Simple and multiregression analyses were performed to investigate the correlation between CysC and cardiac function in AMI patients. Major adverse cardiovascular events (MACE), cardiovascular, and all-cause mortality were documented, and 351 participants with high cystatin (≥1.09 mg/L) and 714 low cystatin (<1.09 mg/L) were investigated for survival analysis during a 48-month follow-up. Results: 5956 patients with AMI were enrolled in the initial observational analysis, and 1065 patients of the whole cohort were included in the follow-up survival analysis. The admission CysC level was found to be significantly positively correlated to the pro-BNP level (R square = 0.2142, 95% CI 4758 to 5265, p < 0.0001) and negatively correlated to the EF value (R square = 0.0095, 95% CI -3.503 to -1.605, p < 0.0001). Kaplan-Meier survival analysis revealed significantly increased MACE incidence (HR = 2.293, 95% CI 1.400 to 3.755, p < 0.0001), cardiovascular mortality (HR = 3.016, 95% CI 1.694 to 5.371, p = 0.0002), and all-cause mortality (HR = 3.424, 95% CI 2.010 to 5.835, p < 0.0001) in high-admission CysC cohort with AMI at the end of 4-year follow-up. Conclusions: Admission CysC is negatively correlated with cardiac function in AMI patients and acts as a novel predictor for MACE incidence in the whole population. Further studies are needed to investigate the specific mechanism of CysC in the cardiac function deterioration among AMI patients.


Assuntos
Cistatina C , Infarto do Miocárdio , Biomarcadores , Humanos , Infarto do Miocárdio/complicações , Prognóstico , Volume Sistólico
18.
Front Bioeng Biotechnol ; 10: 851692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242753

RESUMO

Bipolar disorder is a chronic mental disease with a heavy social and economic burden that causes extreme mood swings in patients. Valproate is a first-line drug for bipolar disorder patients to stabilize their daily mood. However, an excessive amount of valproate in the blood could induce severe adverse effects, which necessitates the monitoring of blood valproate levels for patients. Here, we developed an innovative electrochemical sensor for selective and simple detection of valproate based on a molecularly imprinted polymer membrane via one-step electropolymerization. Gold nanoparticles were electrochemically modified to the screen-printed electrode under the selective membrane to enhance its conductivity and stability. The successfully fabricated biosensor was characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry methods. The binding of the target molecules to the valproate-customized biomimetic polypyrrole membrane blocks cavities in the membrane and alters its electric properties, which can be detected as a decrease in the peak current by differential pulse voltammetry method. The peak current change presents a great log-linear response to the valproate concentration around the therapeutic window. The limit of detection of this method was 17.48 µM (LOD, S/N = 3) and the sensitivity was 31.86 µM µA-1. Furthermore, the biosensors exhibited both satisfying specificity with the interference of other psychological pharmaceutical drugs and uniformity among sensors, indicating their potential and reliability in translational application. This simple and reliable method of sensing valproate molecules primarily provides an exceptional solution to valproate point-of-care testing in clinical practice.

19.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112129

RESUMO

The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular , Proliferação de Células , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Animais , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Receptor Smoothened/deficiência , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Stem Cell Res Ther ; 13(1): 19, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033199

RESUMO

BACKGROUND: Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. METHODS: Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. RESULTS: modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. CONCLUSIONS: These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


Assuntos
Fator de Crescimento Insulin-Like I , Osteoartrite , Tecido Adiposo , Animais , Condrócitos/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA