Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Aging (Albany NY) ; 16(5): 4811-4831, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460944

RESUMO

Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft (PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for developing anti-myeloma therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Mieloma Múltiplo , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Proliferação de Células , Mutação
2.
Aging (Albany NY) ; 15(16): 8220-8236, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37606987

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy, in which the dysfunction of the ubiquitin-proteasome pathway is associated with the pathogenesis. The valosin containing protein (VCP)/p97, a member of the AAA+ ATPase family, possesses multiple functions to regulate the protein quality control including ubiquitin-proteasome system and molecular chaperone. VCP is involved in the occurrence and development of various tumors while still elusive in MM. VCP inhibitors have gradually shown great potential for cancer treatment. This study aims to identify if VCP is a therapeutic target in MM and confirm the effect of a novel inhibitor of VCP (VCP20) on MM. We found that VCP was elevated in MM patients and correlated with shorter survival in clinical TT2 cohort. Silencing VCP using siRNA resulted in decreased MM cell proliferation via NF-κB signaling pathway. VCP20 evidently inhibited MM cell proliferation and osteoclast differentiation. Moreover, exosomes containing VCP derived from MM cells partially alleviated the inhibitory effect of VCP20 on cell proliferation and osteoclast differentiation. Mechanism study revealed that VCP20 inactivated the NF-κB signaling pathway by inhibiting ubiquitination degradation of IκBα. Furthermore, VCP20 suppressed MM cell proliferation, prolonged the survival of MM model mice and improved bone destruction in vivo. Collectively, our findings suggest that VCP is a novel target in MM progression. Targeting VCP with VCP20 suppresses malignancy progression of MM via inhibition of NF-κB signaling pathway.


Assuntos
Exossomos , Mieloma Múltiplo , Animais , Camundongos , ATPases Associadas a Diversas Atividades Celulares , Diferenciação Celular , Proliferação de Células , NF-kappa B , Osteoclastos , Complexo de Endopeptidases do Proteassoma , Transdução de Sinais , Ubiquitinas , Proteína com Valosina
3.
Oncol Lett ; 26(2): 350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427340

RESUMO

Intracranial meningiomas are the most common tumors of the central nervous system (CNS). Meningiomas account for up to 36% of all brain tumors. The incidence of metastatic brain lesions has not been determined. Up to 30% of adult patients with cancer of one localization or another suffer from a secondary tumor lesion of the brain. The vast majority of meningiomas have meningeal localization; >90% are solitary. The incidence of intracranial dural metastases (IDM) is 8-9% of cases, while in 10% of cases, the brain is the only localization, and in 50% of cases the metastases are solitary. Typically, the task of distinguishing between meningioma and dural metastasis does not involve difficulties. Periodically, there is a situation when the differential diagnosis between these tumors is ambiguous, since meningiomas and solitary IDM may have similar characteristics, in particular, a cavity-less solid structure, limited diffusion of water molecules, the presence of extensive peritumoral edema, and an identical contrast pattern. The present study included 100 patients with newly diagnosed tumors of the CNS, who subsequently underwent examination and neurosurgical treatment at the Federal Center for Neurosurgery with histological verification between May 2019 and October 2022. Depending on the histological conclusion, two study groups of patients were distinguished: The first group consisted of patients diagnosed with intracranial meningiomas (n=50) and the second group of patients were diagnosed with IDM (n=50). The study was performed using a magnetic resonance imaging (MRI) General Electric Discovery W750 3T before and after contrast enhancement. The diagnostic value of this study was estimated using Receiver Operating Characteristic curve and area under the curve analysis. Based on the results of the study, it was found that the use of multiparametric MRI (mpMRI) in the differential diagnosis of intracranial meningiomas and IDM was limited by the similarity of the values of the measured diffusion coefficient. The assumption, previously put forward in the literature, regarding the presence of a statistically significant difference in the apparent diffusion coefficient values, which make it possible to differentiate tumors, was not confirmed. When analyzing perfusion data, IDM showed higher cerebral blood flow (CBF) values compared with intracranial meningiomas (P≤0.001). A threshold value of the CBF index was revealed, which was 217.9 ml/100 g/min, above which it is possible to predict IDM with a sensitivity and specificity of 80.0 and 86.0%, respectively. Diffusion-weighted images are not reliable criteria for differentiating intracranial meningiomas from IDM and should not influence the diagnosis suggested by imaging. The technique for assessing the perfusion of a meningeal lesion makes it possible to predict metastases with a sensitivity and specificity close to 80-90% and deserves attention when making a diagnosis. In the future, in order to reduce the number of false negative and false positive results, mpMRI would require additional criteria to be included in the protocol. Since IDM differs from intracranial meningiomas in the severity of neoangiogenesis and, accordingly, in greater vascular permeability, the technique for assessing vascular permeability (wash-in parameter with dynamic contrast enhancement) may serve as a refining criterion for distinguishing between dural lesions.

4.
J Chem Inf Model ; 63(7): 2251-2262, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989086

RESUMO

Identifying the binding residues of protein-peptide complexes is essential for understanding protein function mechanisms and exploring drug discovery. Recently, many computational methods have been developed to predict the interaction sites of either protein or peptide. However, to our knowledge, no prediction method can simultaneously identify the interaction sites on both the protein and peptide sides. Here, we propose a deep graph convolutional network (GCN)-based method called GraphPPepIS to predict the interaction sites of protein-peptide complexes using protein and peptide structural information. We also propose a companion method, SeqPPepIS, for assisting with the lack of structural information and the flexibility of peptides. SepPPepIS replaces the peptide structural features in GraphPPepIS by learning features from peptide sequences. We performed a comprehensive evaluation of the benchmark data sets, and the results show that our two methods outperform state-of-the-art methods on the accurate interaction sites of both protein and peptide sides. We show that our methods can help improve protein-peptide docking. For docking data sets, our methods maintain robust performance in identifying binding sites, thereby enhancing the prediction of peptide binding poses. Finally, we visualized the analysis of protein and peptide graph embedding to demonstrate the learning ability of graph convolution in predicting interaction sites, which was mainly obtained through the shared parameters of a protein graph and peptide graph.


Assuntos
Benchmarking , Peptídeos , Sequência de Aminoácidos , Sítios de Ligação , Descoberta de Drogas
5.
Brain Sci ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831824

RESUMO

BACKGROUND: Several complex cellular and gene regulatory processes are involved in peripheral nerve repair. This study uses bioinformatics to analyze the differentially expressed genes (DEGs) in the satellite glial cells of mice following sciatic nerve injury. METHODS: R software screens differentially expressed genes, and the WebGestalt functional enrichment analysis tool conducts Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis. The Search Tool for the Retrieval of Interacting Genes/Proteins constructs protein interaction networks, and the cytoHubba plug-in in the Cytoscape software predicts core genes. Subsequently, the sciatic nerve injury model of mice was established and the dorsal root ganglion satellite glial cells were isolated and cultured. Satellite glial cells-related markers were verified by immunofluorescence staining. Real-time polymerase chain reaction assay and Western blotting assay were used to detect the mRNA and protein expression of Sox9 in satellite glial cells. RESULTS: A total of 991 DEGs were screened, of which 383 were upregulated, and 508 were downregulated. The GO analysis revealed the processes of biosynthesis, negative regulation of cell development, PDZ domain binding, and other biological processes were enriched in DEGs. According to the KEGG pathway analysis, DEGs are primarily involved in steroid biosynthesis, hedgehog signaling pathway, terpenoid backbone biosynthesis, American lateral skeleton, and melanoma pathways. According to various cytoHubba algorithms, the common core genes in the protein-protein interaction network are Atf3, Mmp2, and Sox9. Among these, Sox9 was reported to be involved in the central nervous system and the generation and development of astrocytes and could mediate the transformation between neurogenic and glial cells. The experimental results showed that satellite glial cell marker GS were co-labeled with Sox9; stem cell characteristic markers Nestin and p75NTR were labeled satellite glial cells. The mRNA and protein expression of Sox9 in satellite glial cells were increased after sciatic nerve injury. CONCLUSIONS: In this study, bioinformatics was used to analyze the DEGs of satellite glial cells after sciatic nerve injury, and transcription factors related to satellite glial cells were screened, among which Sox9 may be associated with the fate of satellite glial cells.

6.
Biomolecules ; 11(12)2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34944479

RESUMO

Numerous studies have confirmed that microRNAs play a crucial role in the research of complex human diseases. Identifying the relationship between miRNAs and diseases is important for improving the treatment of complex diseases. However, traditional biological experiments are not without restrictions. It is an urgent necessity for computational simulation to predict unknown miRNA-disease associations. In this work, we combine Q-learning algorithm of reinforcement learning to propose a RFLMDA model, three submodels CMF, NRLMF, and LapRLS are fused via Q-learning algorithm to obtain the optimal weight S. The performance of RFLMDA was evaluated through five-fold cross-validation and local validation. As a result, the optimal weight is obtained as S (0.1735, 0.2913, 0.5352), and the AUC is 0.9416. By comparing the experiments with other methods, it is proved that RFLMDA model has better performance. For better validate the predictive performance of RFLMDA, we use eight diseases for local verification and carry out case study on three common human diseases. Consequently, all the top 50 miRNAs related to Colorectal Neoplasms and Breast Neoplasms have been confirmed. Among the top 50 miRNAs related to Colon Neoplasms, Gastric Neoplasms, Pancreatic Neoplasms, Kidney Neoplasms, Esophageal Neoplasms, and Lymphoma, we confirm 47, 41, 49, 46, 46 and 48 miRNAs respectively.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , Neoplasias/genética , Algoritmos , Simulação por Computador , Predisposição Genética para Doença , Humanos
7.
Front Oncol ; 11: 779562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804983

RESUMO

Multiple myeloma (MM) is a hematological malignancy worldwide in urgent need for novel therapeutic strategies. Since Velcade (bortezomib) was approved for the treatment of relapsed/refractory MM in 2003, we have seen considerable improvement in extending MM patient survival. However, most patients are fraught with high recurrence rate and incurability. Acupuncture is known for alleviating patient symptoms and improving the quality of life, but it is not well investigated in MM, especially in combination with bortezomib. In this study, we employed LC-MS and UHPLC-MS together with bioinformatics methods to test serum samples from 5TMM3VT MM murine model mice with four different treatments [control (C) group, bortezomib (V) treatment group, acupuncture (A) group, and combined (VA) group]. MM mice in group VA had longer survival time than mice in group A or group V. Joint pathway analysis indicated the underlying arginine and proline metabolism pathway among the 32 significantly decreased metabolites in group VA. CCK-8 assay and in vivo experiments validated that ornithine, the metabolite of arginine, promoted MM cell proliferation. In addition, gene expression omnibus (GEO) database analysis suggested that MM patients with higher ornithine decarboxylase 1 (ODC1) expression were evidently associated with poor overall survival. In summary, this study demonstrates the synergistic effects of acupuncture and bortezomib on extending the survival of MM model mice and provides potential therapeutic targets in the treatment of MM.

8.
Nat Commun ; 12(1): 294, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436633

RESUMO

Earth's habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth's late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.

9.
Environ Res ; 194: 110592, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333036

RESUMO

Estuaries are among the most productive ecosystems and dynamic environments on Earth. Varying salinity is the most important challenge for phytoplankton survival in estuaries. In order to investigate the role of iron nutrition on phytoplankton survival under salinity stress, a freshwater cyanobacterial strain was cultivated in media added with different proportions of seawater (measured with siderophore activities), and supplied with gel-immobilized ferrihydrite as iron source. Results showed that the strain grew well in media with 0% seawater supplied with ferrihydrite as iron source. Surprisingly, the biomasses in media with 50% seawater, with more newly excreted siderophore, were similar to those with 0% seawater, but better than those with 6.25%, 12.5% and 25% seawater. Smaller iron isotopic discriminations between the cyanobacterial cells associated iron and dissolved iron were observed in media with 0% and 50% seawater suggested that higher fractions of iron uptake from aqueous dissolved iron reservoir by these comparatively larger biomasses. In summary, this study proved that iron availability plays a key role in cyanobacterial survival under varying salinity stress, and suggested that siderophores introduced by seawater may accelerate iron dissolution, increase iron availability, and make cyanobacterial cells overcome the adverse effects of high-salinity, and indicated that siderophore excretion is a kind of survival strategy for phytoplankton in face of salinity stress.


Assuntos
Cianobactérias , Ferro , Ecossistema , Água Doce , Água do Mar , Sideróforos
10.
Ann Transl Med ; 9(22): 1694, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34988203

RESUMO

BACKGROUND: The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important mediator of neuroinflammatory responses that regulates inflammatory injury following cerebral ischemia and may be a potential target. Salidroside (Sal) has good anti-inflammatory effects; however, it remains unclear whether Sal can regulate NLRP3 inflammasome activation through the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway after cerebral ischemia to alleviate inflammatory injury. METHODS: We established an oxygen-glucose deprivation and reoxygenation (OGD/R) model of BV2 cells and a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. Cell Counting Kit-8 (CCK-8), flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to detect the viability and apoptosis of BV2 cells. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factors. 2,3,5-triphenyltetrazolium chloride (TTC) staining and modified Neurological Severity Score (mNSS) were used to detect cerebral infarction volume and neurological deficit in rats. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the protein expression levels. RESULTS: Our results showed that Sal increased viability, inhibited lactate dehydrogenase (LDH) release, and reduced apoptosis in OGD/R-induced BV2 cells. Sal reduced the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8. Following induction by OGD/R, BV2 cells exhibited NLRP3 inflammasome activation and increased protein levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, IL-1ß, and IL-18. Protein levels of key TLR4 signaling pathway elements, such as TLR4, myeloid differentiation primary response 88 (MyD88), and phosphorylated nuclear factor kappa B p65 (p-NF-κB p65)/NF-κB p65 were upregulated. Interestingly, it was revealed that Sal could reverse these changes. In addition, TAK242, a specific inhibitor of TLR4, had the same effect as Sal treatment on BV2 cells following induction by OGD/R. In the MCAO/R rat model, Sal was also observed to inhibit NLRP3 inflammasome activation in microglia, reduce cerebral infarction volume, and inhibit apoptosis. CONCLUSIONS: In summary, we found that Sal inhibited NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway, thus playing a protective role. Therefore, Sal may be a promising drug for the clinical treatment of ischemic stroke.

11.
RSC Adv ; 10(45): 27058-27063, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515762

RESUMO

An iron-catalyzed tandem reaction of C-Se bond coupling/selenosulfonation was developed. Starting from sample indols and benzeneselenols versatile biologically active 2-benzeneselenonyl-1H-indoles derivatives were efficiently synthesized. The reaction mechanism was studied by the deuterium isotope study and in situ ESI-MS experiments. This protocol features mild reaction conditions, wider substrate scope and provides an economical approach toward C(sp2)-Se bond formation.

12.
Front Pharmacol ; 10: 172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890936

RESUMO

Poly-adenosine diphosphate-ribose polymerase (PARP) implements posttranslational mono- or poly-ADP-ribosylation modification of target proteins. Among the known 18 members in the enormous family of PARP enzymes, several investigations about PARP1, PARP2, and PARP5a/5b have been launched in the past few decades; more specifically, PARP14 is gradually emerging as a promising drug target. An intact PARP14 (also named ARTD8 or BAL2) is constructed by macro1, macro2, macro3, WWE, and the catalytic domain. PARP14 takes advantage of nicotinamide adenine dinucleotide (NAD+) as a metabolic substrate to conduct mono-ADP-ribosylation modification on target proteins, taking part in cellular responses and signaling pathways in the immune system. Therefore, PARP14 has been considered a fascinating target for treatment of tumors and allergic inflammation. More importantly, PARP14 could be a potential target for a chemosensitizer based on the theory of synthetic lethality and its unique role in homologous recombination DNA repair. This review first gives a brief introduction on several representative PARP members. Subsequently, current literatures are presented to reveal the molecular mechanisms of PARP14 as a novel drug target for cancers (e.g., diffuse large B-cell lymphoma, multiple myeloma, prostate cancer, and hepatocellular carcinoma) and allergic inflammatory. Finally, potential PARP inhibitor-associated adverse effects are discussed. The review could be a meaningful reference for innovative drug or chemosensitizer discovery targeting to PARP14.

13.
J Mol Biol ; 431(13): 2449-2459, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30796987

RESUMO

Nearly one-third of non-synonymous single-nucleotide polymorphism (nsSNPs) are deleterious to human health, but recognition of the disease-associated mutations remains a significant unsolved problem. We proposed a new algorithm, DAMpred, to identify disease-causing nsSNPs through the coupling of evolutionary profiles with structure predictions of proteins and protein-protein interactions. The pipeline was trained by a novel Bayes-guided artificial neural network algorithm that incorporates posterior probabilities of distinct feature classifiers with the network training process. DAMpred was tested on a large-scale data set involving 10,635 nsSNPs from 2154 ORFs in the human genome and recognized disease-associated nsSNPs with an accuracy 0.80 and a Matthews correlation coefficient of 0.601, which is 9.1% higher than the best of other state-of-the-art methods. In the blind test on the TP53 gene, DAMpred correctly recognized the mutations causative of Li-Fraumeni-like syndrome with a Matthews correlation coefficient that is 27% higher than the control methods. The study demonstrates an efficient avenue to quantitatively model the association of nsSNPs with human diseases from low-resolution protein structure prediction, which should find important usefulness in diagnosis and treatment of genetic diseases.


Assuntos
Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas/metabolismo , Algoritmos , Teorema de Bayes , Predisposição Genética para Doença , Humanos , Redes Neurais de Computação , Mapas de Interação de Proteínas , Proteínas/química
14.
Int J Biol Macromol ; 128: 468-479, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30695723

RESUMO

To develop relatively green and ecofriendly smart vehicles for colon-specific drug delivery, carboxymethyl cellulose (CMC) and chitosan (CS) pH-sensitive biopolymers were used in this study. To overcome the weaknesses of CMC carriers, such as poor mechanical performance and an explosive drug release, zinc oxide (ZnO) nanoparticles were incorporated into CMC beads and then coated with a CS layer via a self-assembly technique to form core-shell polyelectrolyte complexes. An anticancer drug, 5-fluorouracil (5-FU), used as a model drug, was loaded into ZnO/CMC/CS bio-nanocomposite beads. Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, and thermogravimetric analysis were used to characterize the chemical structure, morphological changes, and thermal properties of the developed drug carrier, respectively. By studying their swelling and in vitro 5-FU release profiles under simulated gastrointestinal conditions, the pH sensitivity of the developed bio-nanocomposite hydrogel beads could be investigated. The obtained beads with reduced porosity could effectively encapsulate 5-FU and showed self-sustained release behavior depending on the concentrations of CMC, CS, and ZnO nanoparticles. The developed beads also demonstrated a capacity for biodegradation. The results indicated that the ZnO/CMC/CS bio-nanocomposite beads exhibited pH-sensitivity and could be applied efficiently as biodegradable carriers for colon-specific 5-FU delivery.


Assuntos
Carboximetilcelulose Sódica/química , Quitosana/química , Colo/metabolismo , Fluoruracila/química , Microesferas , Nanocompostos/química , Óxido de Zinco/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Fluoruracila/metabolismo , Especificidade de Órgãos
15.
Comput Biol Chem ; 74: 360-367, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29573966

RESUMO

Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Aprendizado de Máquina , Mapas de Interação de Proteínas/genética , Proteínas/química , Proteínas/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/genética
16.
Pharm Res ; 35(3): 57, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29423532

RESUMO

PURPOSE: This work was intended to develop novel doxorubicin (DOX)/zinc (II) phthalocyanine (ZnPc) co-loaded mesoporous silica (MSNs)@ calcium phosphate (CaP)@PEGylated liposome nanoparticles (NPs) that could efficiently achieve collaborative anticancer therapy by the combination of photodynamic therapy (PDT) and chemotherapy. The interlayer of CaP could be utilized to achieve pH-triggered controllable drug release, promote the cellular uptake, and induce cell apoptosis to further enhance the anticancer effects. METHODS: MSNs were first synthesized as core particles in which the pores were diffusion-filled with DOX, then the cores were coated by CaP followed by the liposome encapsulation with ZnPc to form the final DOX/ZnPc co-loaded MSNs@CaP@PEGylated liposome. RESULTS: A core-interlayer-shell MSNs@CaP@PEGylated liposomes was developed as a multifunctional theranostic nanoplatform. In vitro experiment indicated that CaP could not only achieve pH-triggered controllable drug release, promote the cellular uptake of the NPs, but also generate high osmotic pressure in the endo/lysosomes to induce cell apoptosis. Besides, the chemotherapy using DOX and PDT effect was achieved by the photosensitizer ZnPc. Furthermore, the MSNs@CaP@PEGylated liposomes showed outstanding tumor-targeting ability by enhanced permeability and retention (EPR) effect. CONCLUSIONS: The novel prepared MSNs@CaP@PEGylated liposomes could serve as a promising multifunctional theranostic nanoplatform in anticancer treatment by synergic chemo-PDT and superior tumor-targeting ability.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Nanomedicina Teranóstica/métodos , Antibióticos Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Fosfatos de Cálcio/química , Terapia Combinada/métodos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Indóis/administração & dosagem , Indóis/farmacocinética , Isoindóis , Lipossomos , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacocinética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Polietilenoglicóis/química , Silicatos/química , Compostos de Zinco
17.
World J Gastroenterol ; 23(25): 4569-4578, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740345

RESUMO

AIM: To investigate the functional role and underlying molecular mechanism of miR-29a in hepatitis B virus (HBV) expression and replication. METHODS: The levels of miR-29a and SMARCE1 in HBV-infected HepG2.2.15 cells were measured by quantitative real-time PCR and western blot analysis. HBV DNA replication was measured by quantitative PCR and Southern blot analysis. The relative levels of hepatitis B surface antigen and hepatitis B e antigen were detected by enzyme-linked immunosorbent assay. The Cell Counting Kit-8 (CCK-8) was used to detect the viability of HepG2.2.15 cells. The relationship between miR-29a and SMARCE1 were identified by target prediction and luciferase reporter analysis. RESULTS: miR-29a promoted HBV replication and expression, while SMARCE1 repressed HBV replication and expression. Cell viability detection indicated that miR-29a transfection had no adverse effect on the host cells. Moreover, SMARCE1 was identified and validated to be a functional target of miR-29a. Furthermore, restored expression of SMARCE1 could relieve the increased HBV replication and expression caused by miR-29a overexpression. CONCLUSION: miR-29a promotes HBV replication and expression through regulating SMARCE1. As a potential regulator of HBV replication and expression, miR-29a could be a promising therapeutic target for patients with HBV infection.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/genética , Hepatite B/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Replicação Viral/genética , Western Blotting , Carcinoma Hepatocelular/virologia , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Hep G2 , Antígenos de Superfície da Hepatite B/isolamento & purificação , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/isolamento & purificação , Antígenos E da Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/virologia , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
18.
Cell Biochem Funct ; 34(7): 516-521, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27748570

RESUMO

Glioma is one of the most common brain tumors and one of the most aggressive cancers. Although extensive progress has been made regarding to the diagnosis and treatment, the mortality in glioma patients is still high. Therefore, finding new therapeutic targets to the glioma is critical to the advancement in cancer treatment. Recently, the 37-kDa laminin receptor precursor (37LRP) was reported to play important roles in occurrence of some types of cancer, indicating that this molecule may function as a key regulator in the tumor migration and metastasis. However, there is still no report to elucidate the correlation between 37LRP expression and glioma genesis and development. In this study, we found the higher expression of 37LRP in the glioma cells compared with the normal brain cells. We also indicated that the downregulation of 37LRP could affect the glioma biomarker expression and also weaken the proliferative, migratory, and metastatic capacity of glioma cells in vitro. Furthermore, 37LRP silencing inhibited the glioma tumor growth in vivo. Collectively, these data demonstrated that 37LRP regulates the metastasis of glioma cells in vitro and tumor growth in vivo, suggesting that 37LRP may function as a potential molecular target in the glioma treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Receptores de Laminina/metabolismo , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação para Baixo/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/genética , Humanos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Laminina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nanoscale Res Lett ; 11(1): 294, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27299649

RESUMO

The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug-10-hydroxycamptothecin (HCPT)-via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 µm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

20.
ACS Appl Mater Interfaces ; 7(46): 25553-9, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26529185

RESUMO

We constructed 10-hydroxycamptothecin (CPT) "nanodrugs" with functionalization of lipid-PEG-methotrexate (MTX) to prepare high-drug-loaded, and sustained/controlled-release MTX-PEG-CPT nanorods (NRs), in which MTX drug itself can serve as a specific "targeting ligand". The self-targeted nanodrug can codeliver both CPT and MTX drugs with distinct anticancer mechanisms. Furthermore, MTX-PEG-CPT NRs significantly reduced burst release, improved blood circulation and tumor accumulation, enhanced cellular uptake, and synergistically increased anticancer effect against tumor cells compared with MTX-PEG-CPT nanospheres (NSs) and either both free drugs or individual free drug. Therefore, the synergistic targeting/therapeuticy nano-multi-drug codelivery assisted by shape design may advantageously offer a promising new strategy for nanomedicine.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Núcleo Celular/metabolismo , Metotrexato/farmacologia , Nanotubos/química , Animais , Camptotecina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Fluorescência , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanosferas/química , Nanosferas/ultraestrutura , Nanotubos/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA