Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Death Dis ; 14(11): 735, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951930

RESUMO

Though TDP-43 protein can be translocated into mitochondria and causes mitochondrial damage in TDP-43 proteinopathy, little is known about how TDP-43 is imported into mitochondria. In addition, whether mitochondrial damage is caused by mitochondrial mislocalization of TDP-43 or a side effect of mitochondria-mediated TDP-43 degradation remains to be investigated. Here, our bioinformatical analyses reveal that mitophagy receptor gene FUNDC1 is co-expressed with TDP-43, and both TDP-43 and FUNDC1 expression is correlated with genes associated with mitochondrial protein import pathway in brain samples of patients diagnosed with TDP-43 proteinopathy. FUNDC1 promotes mitochondrial translocation of TDP-43 possibly by promoting TDP-43-TOM70 and DNAJA2-TOM70 interactions, which is independent of the LC3 interacting region of FUNDC1 in cellular experiments. In the transgenic fly model of TDP-43 proteinopathy, overexpressing FUNDC1 enhances TDP-43 induced mitochondrial damage, whereas down-regulating FUNDC1 reverses TDP-43 induced mitochondrial damage. FUNDC1 regulates mitochondria-mediated TDP-43 degradation not only by regulating mitochondrial TDP-43 import, but also by increasing LONP1 level and by activating mitophagy, which plays important roles in cytosolic TDP-43 clearance. Together, this study not only uncovers the mechanism of mitochondrial TDP-43 import, but also unravels the active role played by mitochondria in regulating TDP-43 homeostasis.


Assuntos
Proteínas Mitocondriais , Proteinopatias TDP-43 , Humanos , Proteases Dependentes de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteinopatias TDP-43/metabolismo
2.
Protein Cell ; 14(4): 238-261, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942388

RESUMO

Neurons migrate from their birthplaces to the destinations, and extending axons navigate to their synaptic targets by sensing various extracellular cues in spatiotemporally controlled manners. These evolutionally conserved guidance cues and their receptors regulate multiple aspects of neural development to establish the highly complex nervous system by mediating both short- and long-range cell-cell communications. Neuronal guidance genes (encoding cues, receptors, or downstream signal transducers) are critical not only for development of the nervous system but also for synaptic maintenance, remodeling, and function in the adult brain. One emerging theme is the combinatorial and complementary functions of relatively limited classes of neuronal guidance genes in multiple processes, including neuronal migration, axonal guidance, synaptogenesis, and circuit formation. Importantly, neuronal guidance genes also regulate cell migration and cell-cell communications outside the nervous system. We are just beginning to understand how cells integrate multiple guidance and adhesion signaling inputs to determine overall cellular/subcellular behavior and how aberrant guidance signaling in various cell types contributes to diverse human diseases, ranging from developmental, neuropsychiatric, and neurodegenerative disorders to cancer metastasis. We review classic studies and recent advances in understanding signaling mechanisms of the guidance genes as well as their roles in human diseases. Furthermore, we discuss the remaining challenges and therapeutic potentials of modulating neuronal guidance pathways in neural repair.


Assuntos
Orientação de Axônios , Neurônios , Humanos , Orientação de Axônios/genética , Axônios/metabolismo , Transdução de Sinais/genética , Comunicação Celular
3.
EMBO Rep ; 22(7): e52006, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34096155

RESUMO

Tunneling nanotubes (TNTs) are actin-rich structures that connect two or more cells and mediate cargo exchange between spatially separated cells. TNTs transport signaling molecules, vesicles, organelles, and even pathogens. However, the molecular mechanisms regulating TNT formation remain unclear and little is known about the endogenous mechanisms suppressing TNT formation in lung cancer cells. Here, we report that MICAL2PV, a splicing isoform of the neuronal guidance gene MICAL2, is a novel TNT regulator that suppresses TNT formation and modulates mitochondrial distribution. MICAL2PV interacts with mitochondrial Rho GTPase Miro2 and regulates subcellular mitochondrial trafficking. Moreover, down-regulation of MICAL2PV enhances survival of cells treated with chemotherapeutical drugs. The monooxygenase (MO) domain of MICAL2PV is required for its activity to inhibit TNT formation by depolymerizing F-actin. Our data demonstrate a previously unrecognized function of MICAL2 in TNT formation and mitochondrial trafficking. Furthermore, our study uncovers a role of the MICAL2PV-Miro2 axis in mitochondrial trafficking, providing a mechanistic explanation for MICAL2PV activity in suppressing TNT formation and in modulating mitochondrial subcellular distribution.


Assuntos
Comunicação Celular , Nanotubos , Citoesqueleto de Actina , Actinas/genética , Humanos , Proteínas dos Microfilamentos , Organelas , Oxirredutases
4.
Nat Commun ; 11(1): 4112, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807784

RESUMO

Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.


Assuntos
Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Fagócitos/metabolismo , Pinocitose/genética , Pinocitose/fisiologia , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Roundabout
5.
PLoS Genet ; 15(5): e1007947, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31100073

RESUMO

Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. Electron microscopy (EM) analyses of patient samples revealed prominent mitochondrial impairment, including abnormal cristae and a loss of cristae; these ultrastructural changes were consistently observed in both cellular and animal models of TDP-43 proteinopathy. In these models, increased TDP-43 expression induced mitochondrial dysfunction, including decreased mitochondrial membrane potential and elevated production of reactive oxygen species (ROS). TDP-43 expression suppressed mitochondrial complex I activity and reduced mitochondrial ATP synthesis. Importantly, TDP-43 activated the mitochondrial unfolded protein response (UPRmt) in both cellular and animal models. Down-regulating mitochondrial protease LonP1 increased mitochondrial TDP-43 levels and exacerbated TDP-43-induced mitochondrial damage as well as neurodegeneration. Together, our results demonstrate that TDP-43 induced mitochondrial impairment is a critical aspect in TDP-43 proteinopathy. Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases.


Assuntos
Proteases Dependentes de ATP/genética , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/genética , Proteínas Mitocondriais/genética , Proteinopatias TDP-43/genética , Resposta a Proteínas não Dobradas , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/biossíntese , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
6.
Cell Prolif ; 52(3): e12606, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896071

RESUMO

OBJECTIVES: Gastric cancer (GC) is one of the most common cancers in the world, causing a large number of deaths every year. The Slit-Robo signalling pathway, initially discovered for its critical role in neuronal guidance, has recently been shown to modulate tumour invasion and metastasis in several human cancers. However, the role of Slit-Robo signalling and the molecular mechanisms underlying its role in the pathogenesis of gastric cancer remains to be elucidated. MATERIALS AND METHODS: Slit2, Robo1 and USP33 expressions were analysed in datasets obtained from the Oncomine database and measured in human gastric cancer specimens. The function of Slit2-Robo1-USP33 signalling on gastric cancer cells migration and epithelial-mesenchymal transition (EMT) was studied both in vitro and in vivo. The mechanism of the interaction between Robo1 and USP33 was explored by co-IP and ubiquitination protein analysis. RESULTS: The mRNA and protein levels of Slit2 and Robo1 are lower in GC tissues relative to those in adjacent healthy tissues. Importantly, Slit2 inhibits GC cell migration and suppresses EMT process in a Robo-dependent manner. The inhibitory function of Slit2-Robo1 is mediated by ubiquitin-specific protease 33 (USP33) via deubiquitinating and stabilizing Robo1. USP33 expression is decreased in GC tissues, and reduced USP33 level is correlated with poor patient survival. CONCLUSIONS: Our study reveals the inhibitory function of Slit-Robo signalling in GC and uncovers a role of USP33 in suppressing cancer cell migration and EMT by enhancing Slit2-Robo1 signalling. USP33 represents a feasible choice as a prognostic biomarker for GC.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Prognóstico , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores Imunológicos/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Ubiquitinação , Proteínas Roundabout
7.
Proc Natl Acad Sci U S A ; 115(41): E9678-E9686, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249657

RESUMO

FUS (fused in sarcoma) proteinopathy is a group of neurodegenerative diseases characterized by the formation of inclusion bodies containing the FUS protein, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Previous studies show that mitochondrial damage is an important aspect of FUS proteinopathy. However, the molecular mechanisms by which FUS induces mitochondrial damage remain to be elucidated. Our biochemical and genetic experiments demonstrate that FUS interacts with the catalytic subunit of mitochondrial ATP synthase (ATP5B), disrupts the formation of ATP synthase complexes, and inhibits mitochondrial ATP synthesis. FUS expression activates the mitochondrial unfolded protein response (UPRmt). Importantly, down-regulating expression of ATP5B or UPRmt genes in FUS transgenic flies ameliorates neurodegenerative phenotypes. Our data show that mitochondrial impairment is a critical early event in FUS proteinopathy, and provide insights into the pathogenic mechanism of FUS-induced neurodegeneration.


Assuntos
Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Doenças Neurodegenerativas/metabolismo , Resposta a Proteínas não Dobradas , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Mitocôndrias/patologia , ATPases Mitocondriais Próton-Translocadoras/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
8.
Protein Cell ; 9(10): 848-866, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28952053

RESUMO

Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animais , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imunoprecipitação , Camundongos
9.
Hum Mol Genet ; 25(23): 5059-5068, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794540

RESUMO

Dysregulation of Fused in Sarcoma (FUS) gene expression is associated with fronto-temporal lobar degeneration (FTLD), and missense mutations in the FUS gene have been identified in patients affected by amyotrophic lateral sclerosis (ALS). However, molecular and cellular defects underlying FUS proteinopathy remain to be elucidated. Here, we examined whether genes important for mitochondrial quality control play a role in FUS proteinopathy. In our genetic screening, Pink1 and Park genes were identified as modifiers of neurodegeneration phenotypes induced by wild type (Wt) or ALS-associated P525L-mutant human FUS. Down-regulating expression of either Pink1 or Parkin genes ameliorated FUS-induced neurodegeneration phenotypes. The protein levels of PINK1 and Parkin were elevated in cells overexpressing FUS. Remarkably, ubiquitinylation of Miro1 protein, a downstream target of the E3 ligase activity of Parkin, was also increased in cells overexpressing FUS protein. In fly motor neurons expressing FUS, both motility and processivity of mitochondrial axonal transport were reduced by expression of either Wt- or P525L-mutant FUS. Finally, down-regulating PINK1 or Parkin partially rescued the locomotive defects and enhanced the survival rate in transgenic flies expressing FUS. Our data indicate that PINK1 and Parkin play an important role in FUS-induced neurodegeneration. This study has uncovered a previously unknown link between FUS proteinopathy and PINK1/Parkin genes, providing new insights into the pathogenesis of FUS proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Drosophila/genética , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Degeneração Neural/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Transporte Axonal/genética , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/fisiopatologia , Regulação da Expressão Gênica , Genes Modificadores/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Degeneração Neural/patologia , Fenótipo , Proteínas rho de Ligação ao GTP/genética
10.
J Mol Biol ; 428(15): 3043-57, 2016 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-27363609

RESUMO

The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine.


Assuntos
Arginina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Miosinas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Catálise , Domínio Catalítico/fisiologia , Fluoretos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Compostos de Magnésio/metabolismo , Ligação Proteica/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
11.
Protein Cell ; 7(11): 804-819, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27225265

RESUMO

Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.


Assuntos
Transporte Axonal/fisiologia , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Animais , Córtex Cerebral/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião de Mamíferos , Expressão Gênica , Dispositivos Lab-On-A-Chip , Microscopia Confocal , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Movimento , Mutação , Cultura Primária de Células , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Software
12.
J Clin Invest ; 125(12): 4407-20, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26529257

RESUMO

Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.


Assuntos
Glicoproteínas/metabolismo , Neoplasias Pulmonares/metabolismo , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Glicoproteínas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Proteínas Supressoras de Tumor/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Roundabout
13.
Cell Res ; 25(3): 275-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656845

RESUMO

Angiogenesis, a process that newly-formed blood vessels sprout from pre-existing ones, is vital for vertebrate development and adult homeostasis. Previous studies have demonstrated that the neuronal guidance molecule netrin-1 participates in angiogenesis and morphogenesis of the vascular system. Netrin-1 exhibits dual activities in angiogenesis: either promoting or inhibiting angiogenesis. The anti-angiogenic activity of netrin-1 is mediated by UNC5B receptor. However, how netrin-1 promotes angiogenesis remained unclear. Here we report that CD146, an endothelial transmembrane protein of the immunoglobulin superfamily, is a receptor for netrin-1. Netrin-1 binds to CD146 with high affinity, inducing endothelial cell activation and downstream signaling in a CD146-dependent manner. Conditional knockout of the cd146 gene in the murine endothelium or disruption of netrin-CD146 interaction by a specific anti-CD146 antibody blocks or reduces netrin-1-induced angiogenesis. In zebrafish embryos, downregulating either netrin-1a or CD146 results in vascular defects with striking similarity. Moreover, knocking down CD146 blocks ectopic vascular sprouting induced by netrin-1 overexpression. Together, our data uncover CD146 as a previously unknown receptor for netrin-1 and also reveal a functional ligand for CD146 in angiogenesis, demonstrating the involvement of netrin-CD146 signaling in angiogenesis during vertebrate development.


Assuntos
Neovascularização Fisiológica/fisiologia , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Fatores de Crescimento Neural/genética , Receptores de Netrina , Netrina-1 , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra
14.
Int J Cancer ; 136(8): 1792-802, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25242263

RESUMO

Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. However, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent noncancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Functional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival. Taken together, our data reveal USP33 as a previously unknown tumor-suppressing gene for CRC by mediating the inhibitory function of Slit-Robo signaling on CRC cell migration. Our work suggests the potential value of USP33 as an independent prognostic marker of CRC.


Assuntos
Movimento Celular/genética , Neoplasias Colorretais/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Transdução de Sinais/genética , Ubiquitina Tiolesterase/genética , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Regulação para Baixo/genética , Genes Supressores de Tumor/fisiologia , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metástase Linfática/genética , Metástase Linfática/patologia , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Receptores Imunológicos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas Roundabout
15.
Protein Cell ; 5(9): 704-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981056

RESUMO

Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina Tiolesterase/metabolismo , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Estudos de Coortes , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Ubiquitina Tiolesterase/genética , Proteínas Roundabout
16.
Sci China Life Sci ; 57(4): 432-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658850

RESUMO

Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylation, transport, surveillance, mRNA localization, mRNA stability control, translational control and editing of various types of RNAs. Aberrant expression of and mutations in RBP genes affect various steps of RNA processing, altering target gene function. RBPs have been associated with various diseases, including neurological diseases. Here, we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2, HuR/HuB/HuC/HuD, TDP-43, Fus, Rbfox1/Rbfox2, QKI and FMRP, discussing their function and roles in human diseases.


Assuntos
Regulação da Expressão Gênica , Doenças do Sistema Nervoso/fisiopatologia , Proteínas de Ligação a RNA/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas ELAV/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso , Doenças do Sistema Nervoso/metabolismo , Antígeno Neuro-Oncológico Ventral , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Cancer Res ; 74(5): 1529-40, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24448236

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2-ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2-ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2-ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference-mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting SLIT2-ROBO signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion.


Assuntos
Axônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metástase Linfática/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neoplasias Pancreáticas/patologia , Axônios/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiotaxia/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metástase Linfática/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Proteínas Roundabout
18.
Cancer Treat Res ; 158: 181-212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222359

RESUMO

Alternative splicing is one of the most powerful mechanisms for generating functionally distinct products from a single genetic loci and for fine-tuning gene activities at the post-transcriptional level. Alternative splicing plays important roles in regulating genes critical for cell death. These cell death genes encode death ligands, cell surface death receptors, intracellular death regulators, signal transduction molecules, and death executor enzymes such as caspases and nucleases. Alternative splicing of these genes often leads to the formation of functionally different products, some of which have antagonistic effects that are either cell death-promoting or cell death-preventing. Differential alternative splicing can affect expression, subcellular distribution, and functional activities of the gene products. Molecular defects in splicing regulation of cell death genes have been associated with cancer development and resistance to treatment. Studies using molecular, biochemical, and systems-based approaches have begun to reveal mechanisms underlying the regulation of alternative splicing of cell death genes. Systematic studies have begun to uncover the multi-level interconnected networks that regulate alternative splicing. A global picture of the complex mechanisms that regulate cell death genes at the pre-mRNA splicing level has thus begun to emerge.


Assuntos
Processamento Alternativo , Precursores de RNA , Morte Celular , Humanos , Neoplasias , Transdução de Sinais
19.
Protein Cell ; 4(2): 155-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23479427

RESUMO

Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Supressoras de Tumor/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Netrina-1 , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA