RESUMO
FS145, a protein containing a WGD motif, was previously described from the salivary transcriptome of the flea Xenopsylla cheopis. Nevertheless, its biological function and complete structure are still uncertain. Herein, FS145 was confirmed to adopt a common αßß structure with the WGD motif exposed on its surface and located right at the top of a loop composed of residues 72-81. Furthermore, FS145 dose-dependently inhibited the proliferation, adhesion, migration, and tube formation of HUVECs by not only binding to integrin αvß3 but also by subsequently inactivating the FAK/Src/MAPK pathway along with the reduction of the expression of MMP-2, MMP-9, VEGFA, bFGF, Ang2, Tie2, HIF-1α, and FAK. Moreover, FS145 also inhibited aortic vessel sprout and showed strong anti-angiogenic activities as assessed ex vivo, by employing the rat aortic ring assay, chick embryo chorioallantoic membrane, and zebrafish embryo models. Altogether, our results suggest that FS145 suppresses angiogenesis ex vivo and in vitro by blocking integrin αvß3. The current study reveals the first anti-angiogenesis disintegrin with WGD motif from invertebrates and provides a beneficial pharmacological activity to inhibit abnormal angiogenesis.
Assuntos
Desintegrinas , Sifonápteros , Embrião de Galinha , Ratos , Animais , Desintegrinas/farmacologia , Desintegrinas/química , Integrina alfaVbeta3/metabolismo , Sifonápteros/metabolismo , Angiogênese , Peixe-Zebra/metabolismo , Células Cultivadas , Neovascularização Fisiológica , Movimento Celular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/químicaRESUMO
Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 µg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-ß-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.
Assuntos
Células Endoteliais , Receptores da Neurocinina-1 , Camundongos , Animais , Receptores da Neurocinina-1/metabolismo , Pele/metabolismo , Cicatrização , Peptídeos/farmacologia , Medicina TradicionalRESUMO
Chansu, a mixture extracted from Duttaphrynus melanostictus or Bufo gargarizans Cantor, is a traditional Chinese medicine with a broad range of medical applications. However, the peptides/proteins in it have not received adequate attention. Herein, a Cathelicidin-DM-derived peptide named Cath-DM-NT was identified from the skin of D. melanostictus. Previous studies have shown that Cathelicidin-DM has significant antibacterial activity, while Cath-DM-NT has no antibacterial activity. In this study, Cath-DM-NT is found to have lectin-like activity which can agglutinate erythrocytes and bacteria, and bind to lipopolysaccharide (LPS). In addition, Cath-DM-NT has antioxidant activity, which can scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) radicals and reduce Fe3+. Consistently, Cath-DM-NT can protect PC12 cells from H2O2-induced oxidative damage and carrageenan-induced paw edema, reduce malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and restore superoxide dismutase (SOD) and glutathione (GSH) levels. Our study suggests that Cath-DM-NT can serve as a lead compound for the development of drugs with dual lectin and antioxidant effects.
Assuntos
Antioxidantes , Catelicidinas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Lectinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Glutationa , BufonidaeRESUMO
Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 µM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Potencial da Membrana MitocondrialRESUMO
Scorpion-venom-derived peptides have become a promising anticancer agent due to their cytotoxicity against tumor cells via multiple mechanisms. The suppressive effect of the cationic antimicrobial peptide Smp24, which is derived from the venom of Scorpio Maurus palmatus, on the proliferation of the hepatoma cell line HepG2 has been reported earlier. However, its mode of action against HepG2 hepatoma cells remains unclear. In the current research, Smp24 was discovered to suppress the viability of HepG2 cells while having a minor effect on normal LO2 cells. Moreover, endocytosis and pore formation were demonstrated to be involved in the uptake of Smp24 into HepG2 cells, which subsequently interacted with the mitochondrial membrane and caused the decrease in its potential, cytoskeleton reorganization, ROS accumulation, mitochondrial dysfunction, and alteration of apoptosis- and autophagy-related signaling pathways. The protecting activity of Smp24 in the HepG2 xenograft mice model was also demonstrated. Therefore, our data suggest that the antitumor effect of Smp24 is closely related to the induction of cell apoptosis, cycle arrest, and autophagy via cell membrane disruption and mitochondrial dysfunction, suggesting a potential alternative in hepatocellular carcinoma treatment.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Venenos de Escorpião , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Escorpiões/metabolismo , Venenos de Escorpião/metabolismo , Espécies Reativas de Oxigênio , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo , Proliferação de Células , Potencial da Membrana MitocondrialRESUMO
Non-small cell lung cancer (NSCLC) is the leading cause of death in lung cancer due to its aggressiveness and rapid migration. The potent antitumor effect of Smp24, an antimicrobial peptide derived from Egyptian scorpion Scorpio maurus palmatus via damaging the membrane and cytoskeleton have been reported earlier. However, its effects on mitochondrial functions and ROS accumulation in human lung cancer cells remain unknown. In the current study, we discovered that Smp24 can interact with the cell membrane and be internalized into A549 cells via endocytosis, followed by targeting mitochondria and affect mitochondrial function, which significantly causes ROS overproduction, altering mitochondrial membrane potential and the expression of cell cycle distribution-related proteins, mitochondrial apoptotic pathway, MAPK, as well as PI3K/Akt/mTOR/FAK signaling pathways. In summary, the antitumor effect of Smp24 against A549 cells is related to the induction of apoptosis, autophagy plus cell cycle arrest via mitochondrial dysfunction, and ROS accumulation. Accordingly, our findings shed light on the anticancer mechanism of Smp24, which may contribute to its further development as a potential agent in the treatment of lung cancer cells.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Mitocôndrias , Proteínas Mitocondriais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escorpiões/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: Bacterial resistance to all currently available conventional antibiotics has caused a global public health crisis and led to an imperative search for new agents. Antimicrobial peptides (AMPs) are essential components of host innate immune defense against microbial invasions. OBJECTIVES: The objective of this study was to report a novel AMP, brevinin-2KP, from the skin of the black Kaloula pulchra frog and describe its structural and biological characterization. MATERIALS AND METHODS: The physical and chemical parameters of brevinin-2KP were predicted with the ExPASy Bioinformatics Resource Portal. The assembled sequences were aligned with ClustalW, and the phylogenetic tree was constructed using Mega. Circular dichroism (CD) experiments were carried out to identify the secondary structure and the stability of peptide in different solvent environments. The cytotoxicity of brevinin-2KP was evaluated by the MTT test. To determine antibacterial activity of brevinin- 2KP, a standard two-fold broth dilution method was used. SEM was carried out to observe the morphological change in the bacterial treated by brevinin-2KP. The live/dead bacterial viability was measured with a LIVE/DEAD® BacLight kit. Histamine release and mast cell degranulation assays were performed. RESULTS: The precursor of brevinin-2KP contains 72 amino acid residues, including a conserved signal peptide, acidic propeptide with KR residues, and mature peptide with a sequence of GVITDALKGAAKTVAAELLKKAHCKLTNSC. Phylogenetic analysis based on the amino acid sequences of 34 brevinin-2 peptides from 30 anuran species demonstrates that K. pulchra is genetically closely related to the genus Hylarana. The CD spectra analysis indicates that brevinin-2KP adopts random coil in the water and an organized α-helical conformation in SDS solution. Further, this secondary structure is stable under high salt and high-temperature conditions. Brevinin-2KP is weakly active towards the tested Gram-positive and Gram-negative bacteria as well as fungi due to its membranolytic action. Moreover, brevinin-2KP inhibits the proliferation of several mammal cells with IC50 values ranging from 3.27 to 59.75 µM. In addition, brevinin-2KP promotes degranulation and histamine release of mast cells, indicating that it is involved in the inflammatory response. CONCLUSION: This is the first report on AMP identified from the skin of K. pulchra. Brevinin-2KP adopts a typical amphipathic α-helix conformation in membrane mimic environment and shows antimicrobial and antitumor activities by potential membranolytic mechanism. In addition, brevinin-2KP can promote degranulation and histamine release of mast cells. Brevinin-2KP is expected to become a good drug temple molecule.
Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Aminoácidos , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Anuros/metabolismo , Clonagem Molecular , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Mamíferos/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Sinais Direcionadores de Proteínas , Pele/metabolismo , Solventes , ÁguaRESUMO
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 µM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.
Assuntos
Doenças Autoimunes , Canal de Potássio Kv1.3 , Venenos de Escorpião , Linfócitos T , Xenopsylla , Adjuvantes Imunológicos/farmacologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Humanos , Fatores Imunológicos/farmacologia , Interleucina-2/metabolismo , Canal de Potássio Kv1.3/imunologia , Ativação Linfocitária/efeitos dos fármacos , NF-kappa B/metabolismo , Bloqueadores dos Canais de Potássio/imunologia , Ratos , Glândulas Salivares/química , Venenos de Escorpião/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Xenopsylla/químicaRESUMO
Several years have passed since the Zika virus (ZIKV) pandemic reoccurred in 2015-2016. However, there is still a lack of proved protective vaccines or effective drugs against ZIKV. The peptide brevinin-2GHk (BR2GK), pertaining to the brevinin-2 family of antimicrobial peptides, has been reported to exhibit only weak antibacterial activity, and its antiviral effects have not been investigated. Thus, we analyzed the effect of BR2GK on ZIKV infection. BR2GK showed significant inhibitory activity in the early and middle stages of ZIKV infection, with negligible cytotoxicity. Furthermore, BR2GK was suggested to bind with ZIKV E protein and disrupt the integrity of the envelope, thus directly inactivating ZIKV. In addition, BR2GK can also penetrate the cell membrane, which may contribute to inhibition of the middle stage of ZIKV infection. BR2GK blocked ZIKV E protein expression with an IC50 of 3.408 ± 0.738 µΜ. In summary, BR2GK was found to be a multi-functional candidate and a potential lead compound for further development of anti-ZIKV drugs.
Assuntos
Peptídeos Antimicrobianos/farmacologia , Antivirais/farmacologia , Pele/química , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Animais , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Antivirais/química , Antivirais/metabolismo , Anuros/metabolismo , Humanos , Simulação de Acoplamento Molecular , Pele/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Zika virus/genética , Zika virus/fisiologiaRESUMO
Excessive osteoclast leads to the imbalance in bone reconstruction and results in osteolytic diseases, such as osteoporosis and rheumatic arthritis. Integrin αvß3 abundantly expresses on osteoclast and plays a critical role in the formation and function of osteoclast, therefore, blockage of αvß3 has become an attractive therapeutic option for osteolytic diseases. In this study, we find that Tablysin-15, a RGD motif containing disintegrin, concentration-dependently suppresses RANKL-induced osteoclastogenesis, F-actin ring formation and bone resorption without affecting the cell viabilities. Tablysin-15 binds to integrin αvß3 and inhibits the activation of FAK-associated signaling pathways. Tablysin-15 also suppresses the activation of NF-кB, MAPK, and Akt-NFATc1 signaling pathways, which are crucial transcription factors during osteoclast differentiation. Moreover, Tablysin-15 decreases the osteoclastogenesis marker gene expression, including MMP-9, TRAP, CTSK, and c-Src. Finally, Tablysin-15 significantly inhibits LPS-induced bone loss in a mouse model. Taken together, our results indicate that Tablysin-15 significantly suppresses osteoclastogenesis in vitro and in vivo, thus it might be a excellent candidate for treating osteolytic-related diseases.
Assuntos
Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/prevenção & controle , Proteínas de Insetos/farmacologia , Osteogênese/efeitos dos fármacos , Proteínas e Peptídeos Salivares/farmacologia , Animais , Conservadores da Densidade Óssea/toxicidade , Reabsorção Óssea/induzido quimicamente , Fêmur/efeitos dos fármacos , Fêmur/patologia , Proteínas de Insetos/toxicidade , Integrina alfaVbeta3/metabolismo , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteínas e Peptídeos Salivares/toxicidade , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
AIMS: This study aimed to explore the antioxidant properties and neuroprotective effects of Esc-1GN. MAIN METHODS: FRAP assay and ABTS, DPPH, and NO radicals radical scavenging assays were performed to investigated the Antioxidant activities of Esc-1GN in vitro. Hydrogen peroxide (H2O2)-induced cell damage model was used to determine the neuroprotective effects of Esc-1GN. Carrageenan-injected inflamed paw model was performed to analysis the antioxidant and anti-inflammatory properties of Esc-1GN in vivo. KEY FINDINGS: Esc-1GN scavenged the ABTS, DPPH, and NO radicals and reduced Fe3+ in a concentration-dependent manner. Moreover, Esc-1GN exhibited neuroprotective activity by decreasing malondialdehyde and reactive oxygen species accumulation, restoring endogenous antioxidant enzyme activity, and inhibiting H2O2-induced cell cycle arrest and apoptosis in PC12 cells. Esc-1GN significantly reversed the dysregulation of MAPK, AKT and NF-κB signaling caused by H2O2. In vivo, Esc-1GN decreased MDA, COX-2, NO, TNF-α, IL-6, and Il-1ß levels and increased SOD, CAT activity and GSH level in carrageenan-injected inflamed paw tissues. SIGNIFICANCE: These findings suggest that Esc-1GN might serve as a potential antioxidant agent with therapeutic potential in human neurodegenerative diseases.