Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Cancer Immunol Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39093821

RESUMO

Oncolytic adenoviruses (oADV) are promising cancer treatment agents. However, in vivo hepatic sequestration and the host immunological response against the agents limit the therapeutic potential of oADVs. Herein, we present a combined, rational design method for improving oADV infection efficiency, immunogenicity, and treatment efficacy by self-biomineralization. We integrated the biomimetic nucleopeptide W6p into the capsid of oADV using reverse genetics, allowing calcium phosphate mineralization to be biologically induced on the surface of oADV under physiological conditions, resulting in a mineral exterior. This self-biomineralized, modified oADV (oADV-W6-CaP) enhanced infection efficiency and therapeutic efficacy in coxsackie and adenovirus receptor (CAR)-negative cancer cells while protecting them against neutralization by pre-existing neutralizing antibodies. In subcutaneous mouse tumor models, systemic injection of oADV-W6-CaP demonstrated improved antitumor effectiveness, which was associated with increased T-cell infiltration and CD8+ T-cell activation. In addition, the anticancer immune response elicited by oADV-W6-CaP was dependent on CD8+ T cells, which mediated long-term immunological memory and systemic antitumor immunity against the same tumor. Finally, the addition of PD-1 or CD47 inhibition boosted the anticancer effects of oADV-W6-CaP and raised the rate of complete tumor clearance in tumor-bearing animals. The self-biomineralized oADV shifted the suppressive tumor microenvironment from a "cold" state to a "hot" state and synergized with immune checkpoint blockade to exert outstanding tumoricidal effects, demonstrating promising potential for cancer immunotherapy.

2.
Chem Commun (Camb) ; 60(64): 8427-8430, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39034822

RESUMO

A conjugated polymer, P4TTD-DPP, based on tetra-fused isoindigo-alt-diketopyrrolopyrrole, has been synthesized as a photothermal therapeutic nanotransducer within the near-infrared-II (NIR-II) window. P4TTD-DPP exhibits a notable mass extinction coefficient of 62.8 L g-1 cm-1 at 1064 nm. Additionally, P4TTD-DPP nanoparticles demonstrate remarkable photothermal conversion efficiency of 91.5% at 1064 nm and exhibit excellent anticancer efficacy under photothermal conditions.


Assuntos
Antineoplásicos , Raios Infravermelhos , Polímeros , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química , Indóis/química , Indóis/farmacologia , Terapia Fototérmica , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Pirróis/química , Pirróis/farmacologia , Fototerapia , Camundongos , Estrutura Molecular , Animais
3.
Int J Biol Macromol ; 276(Pt 1): 133781, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992528

RESUMO

Peptide-major histocompatibility complex (pMHC) multimers are wide recognized as the premier technique for detecting, characterizing, and isolating antigen-specific CD8+ T-cell subsets. These multimers are specifically useful in studying infections, autoimmune conditions, and cancer through single-cell analysis techniques such as flow cytometry and fluorescence microscopy. However, the development of high-throughput assays with commercially available pMHC tetramers can be expensive, while in-house production may pose challenges for most biology research laboratories. In this context, we introduce a cost-friendly and uncomplicated protocol to prepare empty MHC class I tetramers using disulfide-stabilized molecules and photolabile peptide ligands. Our method relies on disulfide bond-stabilized MHC-I molecules, which demonstrated stability when folded into stable monomers in the presence of a photolabile epitope. These monomers, upon ultraviolet irradiation and streptavidin binding, efficiently assemble into tetramers devoid of any peptide. Following a short incubation with the peptide of interest under gentle conditions, the resulting pMHC tetramer effectively detects patient-sourced, neoantigen-specific T cells. Our unique approach streamlines large-scale pMHC generation, thus paving the way for advancements in T cell-based diagnostics and personalized therapies.

4.
J Nanobiotechnology ; 22(1): 410, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992774

RESUMO

Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.


Assuntos
Regeneração Óssea , Diferenciação Celular , Osteogênese , Animais , Camundongos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Humanos
5.
Mol Biomed ; 5(1): 27, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009906

RESUMO

miRNA has emerged as a crucial regulator in various of pathological and physiological processes, yet its precise mechanism of action the detailed mechanism of their action in Head and neck squamous cell carcinoma (HNSCC) remains incompletely understood. This study sheds light on the role of mi-151-5p, revealing its significantly elevated expression in tumor cells, which notably enhances the invasion and migration of HNSCC cells. This effect is achieved through directly targeting LY6/PLAUR Domain Containing 3 (LYPD3) by miR-151-5p, involving complementary binding to the 3'-untranslated regions (3'-UTR) in the mRNA of LYPD3. Consequently, this interaction accelerates the metastasis of HNSCC. Notably, clinical observations indicate a correlation between high expression of miR-151-5p and low levels of LYPD3 in clinical settings are correlated with poor prognosis of HNSCC patients. Furthermore, our investigation demonstrates that glycosylation of LYPD3 modulates its subcellular localization and reinforces its role in suppressing HNSCC metastasis. Additionally, we uncover a potential regulatory mechanism involving the facilitation of miR-151-5p maturation and accumulation through N6-methyladenosine (m6A) modification. This process is orchestrated by methyltransferase-like 3 (METTL3) and mediated by a newly identified reader, heterogeneous nuclear ribonucleoprotein U (hnRNP U). These findings collectively underscore the significance of the METTL3/miR-151-5p/LYPD3 axis serves as a prominent driver in the malignant progression of HNSCC.


Assuntos
Adenosina , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Regiões 3' não Traduzidas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
6.
Drug Des Devel Ther ; 18: 1695-1710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799799

RESUMO

Purpose: Polygala tenuifolia Willd. (PT), a traditional Chinese medicinal plant extensively employed in managing Alzheimer's disease, exhibits notable gastrointestinal side effects as highlighted by prior investigations. In contrast, Magnolia officinalis Rehd. et Wils (MO), a traditional remedy for gastrointestinal ailments, shows promising potential for ameliorating this adverse effect of PT. The objective of this study is to examine the underlying mechanism of MO in alleviating the side effects of PT. Methods: Hematoxylin-eosin (H&E) staining was used to observe the structural damage of zebrafish intestine, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors and oxidative stress. The integrity of the intestinal tight junctions was examined using transmission electron microscope (TEM). Moreover, the expression of intestinal barrier genes and PI3K/AKT/NF-κB signaling pathway-related genes was determined through quantitative real-time PCR. The changes in intestinal microbial composition were analyzed using 16S rRNA and metagenomic techniques. Results: MO effectively ameliorated intestinal pathological damage and barrier gene expression, and significantly alleviated intestinal injury by reducing the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, and inhibiting the activation of PI3K/AKT/NF-κB pathway. Furthermore, MO could significantly increase the relative abundance of beneficial microorganisms (Lactobacillus, Blautia and Saccharomyces cerevisiae), and reduce the relative abundance of pathogenic bacteria (Plesiomonas and Aeromonas). Conclusion: MO alleviated PT-induced intestinal injury, and its mechanism may be related to the inhibition of PI3K/AKT/NF-κB pathway activation and regulation of intestinal flora.


Assuntos
Microbioma Gastrointestinal , Magnolia , NF-kappa B , Fosfatidilinositol 3-Quinases , Polygala , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Peixe-Zebra , Magnolia/química , Polygala/química , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Intestinos/efeitos dos fármacos , Intestinos/patologia
7.
J Vasc Surg ; 80(2): 574-585.e4, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38580159

RESUMO

OBJECTIVE: Although carotid body tumors (CBTs) are rare, they attract particular attention because of their propensity for malignant transformation and the high surgical risk. Because data are scarce and as it is difficult to achieve a large sample size, no study has yet comprehensively analyzed the characteristics, management, or operative complications of CBTs. Therefore, we collected and analyzed all currently available information on CBTs and used the pooled data to derive quantitative information on disease characteristics and management. METHODS: We systematically searched PubMed, Embase, the Cochrane Library, and the Web of Science up to December 1, 2022, for studies that investigated the characteristics and management of CBTs. The primary objective was to identify the prevalence of the various characteristics and the incidence of complications. The secondary objective was to compare patients who underwent preoperative embolization (PE) and those who did not (non-PE), as well as to compare patients with different Shamblin grades and those with and without succinate dehydrogenase (SDH) mutations in terms of CBT characteristics and complications. Two reviewers selected studies for inclusion and independently extracted data. All statistical analyses were performed using the standard statistical procedures of Review Manager 5.2 and Stata 12.0. RESULTS: A total of 155 studies with 9291 patients and 9862 tumors were identified. The pooled results indicated that the median age of patients with CBT was 45.72 years, and 65% were female. The proportion of patients with bilateral lesions was 13%. In addition, 16% of patients had relevant family histories, and the proportion of those with SDH gene mutations was 36%. Sixteen percent of patients experienced multiple paragangliomas, and 12% of CBTs had catecholamine function. The incidence of cranial nerve injury (CNI) was 27%, and 14% of patients suffered from permanent CNI. The incidence rates of operative mortality and stroke were both 1%, and 4% of patients developed transient ischemic attacks. Of all CBTs, 6% were malignant or associated with metastases or recurrences. The most common metastatic locations were the lymph nodes (3%) and bone (3%), followed by the lungs (2%). Compared with non-PE, PE reduced the estimated blood loss (standardized mean difference, -0.95; 95% confidence interval [CI], -1.70 to -0.20) and the operation time (standardized mean difference, -0.56; 95% CI, -1.03 to -0.09), but it increased the incidence of stroke (odds ratio, 2.44; 95% CI, 1.04-5.73). Higher Shamblin grade tumors were associated with more operative complications. Patients who were SDH gene mutation-positive were more likely to have a relevant family history and had more symptoms. CONCLUSIONS: CBT was most common in middle-aged females, and early surgical resection was feasible; there was a low incidence of serious operative complications. Routine PE is not recommended because this may increase the incidence of stroke, although PE somewhat reduced the estimated blood loss and operation time. Higher Shamblin grade tumors increased the incidence of operative complications. Patients who were SDH gene mutation-positive had the most relevant family histories and symptoms.


Assuntos
Tumor do Corpo Carotídeo , Embolização Terapêutica , Humanos , Tumor do Corpo Carotídeo/cirurgia , Tumor do Corpo Carotídeo/epidemiologia , Tumor do Corpo Carotídeo/terapia , Tumor do Corpo Carotídeo/genética , Prevalência , Fatores de Risco , Feminino , Masculino , Embolização Terapêutica/efeitos adversos , Resultado do Tratamento , Pessoa de Meia-Idade , Adulto , Medição de Risco , Idoso , Adulto Jovem , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Adolescente , Mutação
8.
Clin Neurol Neurosurg ; 240: 108273, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608351

RESUMO

BACKGROUND: The effectiveness of cervical perivascular sympathectomy (CPVS) in enhancing upper limb motor function in children with cerebral palsy is unclear, and the factors that influence the effectiveness of the surgery have not been documented. OBJECTIVE: To investigate the effectiveness of CPVS in enhancing upper limb motor function in children with cerebral palsy and develop a predictive chart for potential associated adverse outcomes METHODS: The study included 187 children with cerebral palsy who underwent CPVS at the Cerebral Palsy Center, Second Affiliated Hospital of Xinjiang Medical University, between January 2018 and January 2022. Patients were categorized into two groups based on prognostic outcomes: those with adverse and favorable prognoses. Demographic and laboratory data were collected and analyzed from both groups. To identify independent predictors of poor post-CPVS upper limb motor function outcomes, statistical techniques, including univariate analysis and binary logistic regression, were applied. Subsequently, these predictors were integrated to formulate a comprehensive predictive model. RESULTS: In this cohort of 187 children with cerebral palsy undergoing CPVS, 68 (36.36%) exhibited a favorable prognosis for upper limb motor function and 119 (63.64%) demonstrated an adverse prognosis. Age, motor function, and serum albumin levels were identified as significant prognostic factors via logistic regression analysis. To develop the model, we divided the sample into a training set (70%, n = 131) and a validation set (30%, n = 56). Employing motor function, serum albumin levels, and age as variables, we crafted a predictive model. The model's performance, reflected by the area under the curve was 0.813 (0.732, 0.894) in the training set and 0.770 (0.647, 0.892) in the validation set, demonstrating its robust predictive capability for post-CPVS adverse outcomes. Furthermore, the consistency curve and Hosmer-Lemeshow test (χ2 = 8.808, p = 0.359) illustrated a strong concordance between the model's predictions of poor prognosis and the actual incidence rate. CONCLUSION: CPVS has been shown to be effective in improving upper limb motor function in patients with cerebral palsy. Independent prognostic factors identified encompass motor function, age, and serum albumin levels. The composite predictive model shows potential for clinical applications.


Assuntos
Paralisia Cerebral , Simpatectomia , Extremidade Superior , Humanos , Paralisia Cerebral/fisiopatologia , Feminino , Masculino , Criança , Pré-Escolar , Resultado do Tratamento , Simpatectomia/métodos , Prognóstico , Adolescente
9.
ACS Cent Sci ; 10(3): 717-728, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559297

RESUMO

Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer's disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau-tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1-IPP4) were designed and synthesized. They are like different forms of molecular "transformers". These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a "molecular clip", IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the "natively unfolded conformation" to the "aggregation competent conformation" before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer's disease drug development.

10.
Int J Med Sci ; 21(3): 474-482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250608

RESUMO

Background: The single nucleotide polymorphism (SNP) of Gastrokine-1 (GKN1) is associated with lung cancer but its association with prognosis is not clear. Methods: Genomic DNA was extracted from the blood samples of 888 patients with lung cancer. The association between GKN1 polymorphism rs4254535 and prognostic was analyzed by the Kaplan-Meier (KM) method, Log-rank test, and Cox proportional hazards model. Results: In females and patients diagnosed with late-stage lung cancer, the CC genotype (CC vs TT, adjusted odds ratio [HR] = 0.57, 95% Confidence Interval [CI]: 0.33-0.99, P = 0.045; HR = 0.66, 95% CI: 0.48-0.92, P = 0.014) and recessive CC genotype (CC vs TT + TC, HR = 0.55, 95% CI: 0.32-0.94, P = 0.028; HR = 0.64, 95% CI: 0.47-0.89, P = 0.006) of rs4254535 conferred a better prognosis, compared with the TT and TT + TC genotype. Rs4254535 dominate TC + CC genotype, recessive CC genotype, and C allele who were adenocarcinoma patients had a significantly better prognosis. The recessive CC genotype of non-smoking patients has a better prognosis, compared to the TT + TC genotype. Additionally, in the dominant TT + TC genotype and C allele, no family history patients had a significantly better prognosis, compared to the TT genotype. Conclusion: For lung cancer patients, GKN1 polymorphism rs4254535 may be a protective genetic marker and predicts the prognosis of lung cancer patients.


Assuntos
Neoplasias Pulmonares , Hormônios Peptídicos , Feminino , Humanos , Prognóstico , Neoplasias Pulmonares/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , China
11.
Med Phys ; 51(1): 18-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856190

RESUMO

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Software , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Dosagem Radioterapêutica
12.
Childs Nerv Syst ; 40(4): 1137-1145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37870563

RESUMO

BACKGROUND: There is a lack of research to determine the efficacy of cervical perivascular sympathectomy (CPVS) in children with cerebral palsy (CP). OBJECTIVE: This study aimed to evaluate the efficacy of CPVS in children with CP and analyze the associated influential factors. METHODS: Using the method of retrospective cohort studies, children who underwent CPVS were included in the CPVS group, whereas those who underwent selective posterior rhizotomy (SPR) were included in the SPR group. The Communication Function Classification System (CFCS) and Teacher Drooling Scale (TDS) were used to evaluate the communication function and salivation in the two groups before and 12 months after surgery and compare the surgical efficiency between the two groups, and the factors affecting the efficacy were screened by binary logistic regression. RESULTS: The study included 406 patients, 202 in the CPVS group and 204 in the SPR group. No significant differences were observed in the baseline characteristics (p > 0.05). The surgical efficacy of the CPVS group (47.01%) was significantly higher than that in the SPR group (9.81%) (χ2 = 71.08, p < 0.001). Binary logic regression analysis showed that preterm birth and Gross Motor Function Classification System (GMFCS) grade were influencing factors of surgical efficacy. Eighteen patients developed postoperative complications. CONCLUSION: CPVS is a safe and effective surgery for cerebral palsy. Preterm birth and GMFCS grade are independent factors affecting the efficacy of surgery.


Assuntos
Paralisia Cerebral , Nascimento Prematuro , Recém-Nascido , Criança , Feminino , Humanos , Paralisia Cerebral/complicações , Estudos Retrospectivos , Simpatectomia/métodos , Rizotomia
13.
Front Oncol ; 13: 1308681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125944

RESUMO

The activation of anti-tumor immunity is critical in treating cancers. Recent studies indicate that several chemotherapy agents can stimulate anti-tumor immunity by inducing immunogenic cell death and durably eradicate tumors. This suggests that immunogenic chemotherapy holds great potential for improving response rates. However, chemotherapy in practice has only had limited success in inducing long-term survival or cure of cancers when used either alone or in combination with immunotherapy. We think that this is because the importance of dose, schedule, and tumor model dependence of chemotherapy-activated anti-tumor immunity is under-appreciated. Here, we review immune modulation function of representative chemotherapy agents and propose a model of immunogenic chemotherapy-induced long-lasting responses that rely on synergetic interaction between killing tumor cells and inducing anti-tumor immunity. We comb through several chemotherapy treatment schedules, and identify the needs for chemotherapy dose and schedule optimization and combination therapy with immunotherapy when chemotherapy dosage or immune responsiveness is too low. We further review tumor cell intrinsic factors that affect the optimal chemotherapy dose and schedule. Lastly, we review the biomarkers indicating responsiveness to chemotherapy and/or immunotherapy treatments. A deep understanding of how chemotherapy activates anti-tumor immunity and how to monitor its responsiveness can lead to the development of more effective chemotherapy or chemo-immunotherapy, thereby improving the efficacy of cancer treatment.

14.
Epigenetics ; 18(1): 2278960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979155

RESUMO

Sepsis is the primary cause of acute kidney injury (AKI) and is associated with high mortality rates. Growing evidence suggests that noncoding RNAs are vitally involved in kidney illnesses, whereas the role of circular RNAs (circRNAs) in sepsis-induced AKI (SAKI) remains largely unknown. In this present study, caecal ligation and puncture (CLP) in mice was performed to establish an SAKI model. The expression of circRNAs and mRNAs was analysed using circRNA microarray or next-generation sequencing. The results revealed that the expressions of 197 circRNAs and 2509 mRNAs were dysregulated. Validation of the selected circRNAs was performed by qRT-PCR. Bioinformatics analyses and chromatin immunoprecipitation demonstrated that NF-κB/p65 signalling induced the upregulation of circC3, circZbtb16, and circFkbp5 and their linear counterparts by p65 transcription in mouse tubular epithelial cells (mTECs). Furthermore, competitive endogenous RNA (ceRNA) networks demonstrated that some components of NF-κB signalling were potential targets of these dysregulated circRNAs. Among them, Tnf-α was increased by circFkbp5 through the downregulation of miR-760-3p in lipopolysaccharide (LPS)-stimulated mTECs. Knocking down circFkbp5 inhibited the p65 phosphorylation and apoptosis in injured mTECs. These findings suggest that the selected circRNAs and the related ceRNA networks provide new knowledge into the fundamental mechanism of SAKI and circFkbp5/miR-760-3p/Tnf-α axis might be therapeutic targets.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Camundongos , Animais , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Metilação de DNA , RNA Mensageiro/genética , Injúria Renal Aguda/genética , Sepse/complicações , Sepse/genética
15.
Heliyon ; 9(7): e17841, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539209

RESUMO

The remodeling of actin cytoskeleton of osteoclasts on the bone matrix is essential for osteoclastic resorption activity. A specific regulator of the osteoclast cytoskeleton, integrin αvß3, is known to provide a key role in the degradation of mineralized bone matrixes. Cilengitide is a potent inhibitor of integrins and is capable of affecting αvß3 receptors, and has anti-tumor and anti-angiogenic and apoptosis-inducing effects. However, its function on osteoclasts is not fully understood. Here, the cilengitide role on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts was explored. Cells were cultured with varying concentrations of cilengitide (0,0.002,0.2 and 20 µM) for 7 days, followed by detected via Cell Counting Kit-8, staining for tartrate resistant acid phosphatase (TRAP), F-actin ring formation, bone resorption assays, adhesion assays, immunoblotting assays, and real-time fluorescent quantitative PCR. Results demonstrated that cilengitide effectively restrained the functionality and formation of osteoclasts in a concentration-dependent manner, without causing any cytotoxic effects. Mechanistically, cilengitide inhibited osteoclast-relevant genes expression; meanwhile, cilengitide downregulated the expression of key signaling molecules associated with the osteoclast cytoskeleton, including focal adhesion kinase (FAK), integrin αvß3 and c-Src. Therefore, this results have confirmed that cilengitide regulates osteoclast activity by blocking the integrin αvß3 signal pathway resulting in diminished adhesion and bone resorption of osteoclasts.

16.
Stem Cell Res Ther ; 14(1): 222, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633928

RESUMO

Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Condrogênese
17.
Adv Healthc Mater ; 12(28): e2301328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392128

RESUMO

To strengthen the antitumor efficacy and avoid toxicity to normal cells of cisplatin and triptolide, herein, an acid and glutathione (GSH) dual-controlled nanoplatform for enhanced cancer treatment through the synergy of both "1+1" apoptosis and "1+1" ferroptosis is designed. Remarkably, ZIF8 in response to tumor microenvironment enhances drug targeting and protects drugs from premature degradation. Meanwhile, the PtIV  center can be easily reduced to cisplatin because of the large amount of GSH, thus liberating the triptolide as the coordinated ligand. The released cisplatin and hemin in turn boost the tumor cell "1+1" apoptosis through chemotherapy and photodynamic therapy, respectively. Furthermore, GSH reduction through PtIV  weakens the activation of glutathione peroxidase 4 (GPX4) effectively. The released triptolide can inhibit the expressions of GSH by regulating nuclear factor E2 related factor 2 (Nrf2), further promoting membrane lipid peroxidation, thus "1+1" ferroptosis can be achieved. Both in vitro and in vivo results demonstrate that the nanosystem can not only perform superior specificity and therapeutic outcomes but also reduce the toxicity to normal cells/tissues of cisplatin and triptolide effectively. Overall, the prodrug-based smart system provides an efficient therapeutic strategy for cancer treatment by virtue of the effect of enhanced "1+1" apoptosis and "1+1" ferroptosis therapies.


Assuntos
Neoplasias da Mama , Diterpenos , Pró-Fármacos , Humanos , Feminino , Cisplatino/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pró-Fármacos/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Neoplasma ; 70(3): 443-450, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498067

RESUMO

The 5-year survival rate for patients with lung cancer, the world's second most frequent malignant tumor, is less than 20%, and its prognosis cannot be clearly predicted. Our aim was to analyze the epidermal growth factor receptor (EGFR) rs763317 (G>A) single nucleotide polymorphism and its association with prognosis in Chinese Han lung cancer patients. 839 patients with primary lung cancer were recruited, and genomic DNA was extracted and genotyped by SNPscan. Kaplan-Meier technique and multivariate Cox proportional hazards model were used to analyze the association between prognosis and EGFR polymorphism rs763317. A significant association after stratification by age, significantly increased lung cancer risk was associated with the AA homozygous genotype of rs763317 (adjusted hazard ratio = 2.53, 95% CI: 1.31-4.88, p=0.005), and conferred a poor survival for lung cancer patients (MST: median survival time: 13.6 months) compared with GG genotype (MST: 41.5 months), and in the recessive model AA genotype (AA vs. GG + GA; adjusted hazard ratio = 2.57, 95% CI: 1.34-4.93, p=0.004) who were young (<60 years) had a significantly increased risk of death. The EGFR polymorphism rs763617 might serve as a significant genetic marker for predicting the prognosis of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , População do Leste Asiático , Receptores ErbB/genética , Predisposição Genética para Doença , Genótipo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Polimorfismo de Nucleotídeo Único , Prognóstico
19.
Int J Surg ; 109(10): 2953-2961, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498142

RESUMO

BACKGROUND AND AIMS: Intestinal anastomosis is a clinical procedure widely used to reconstruct the digestive tract, but authentic laparoscopic intracorporeal intestinal anastomosis (LIIA) models are lacking. However, three-dimensional (3D) printing can enable authentic and reusable models. In this paper, a novel cost-effective 3D-printing training model of LIIA is designed and the authenticity and validity of the model are tested. METHODS: A fused deposition modeling 3D printing and an assembled lab model were built to test LIIA. Fifteen surgeons were required to perform LIIA, and their operation score and time were recorded and analyzed. Five experts were invited to assess the face and content validity of the models. A study was also performed to further evaluate and validate the learning curve of surgeons. RESULTS: The difference in modified anastomosis objective structured assessment of technical skills (MAOSATS) scores between the expert, intermediate, and novice groups were significant (64.1±1.8: 48.5±1.7: 29.5±3.1, P <0.001). In addition, the operation time of the procedure was statistically different for all three groups (21.5±1.9: 30.6±2.8:70.7±4.0, P<0.001 ). The five experts rated the face and content validity of the model very highly, with the median being four out of five. Surgeons who underwent repeated training programs showed improved surgical performance. After eight training sessions, the novices' performance was similar to that of the average level of untrained intermediates, while the operation scores of the intermediates were close to that of the average level of experts. CONCLUSIONS: In this study, it is found that the LIIA model exhibits excellent face, content, and construct validity. Repeated simulation training of the LIIA training program improved the surgeon's operative performance, so the model is considered one of the most effective methods for LIIA training and assessment of surgical quality in the future and for reducing healthcare costs.


Assuntos
Laparoscopia , Treinamento por Simulação , Humanos , Curva de Aprendizado , Laparoscopia/educação , Simulação por Computador , Anastomose Cirúrgica , Impressão Tridimensional , Competência Clínica
20.
Med Phys ; 50(12): 7368-7382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37358195

RESUMO

BACKGROUND: MRI-only radiotherapy planning (MROP) is beneficial to patients by avoiding MRI/CT registration errors, simplifying the radiation treatment simulation workflow and reducing exposure to ionizing radiation. MRI is the primary imaging modality for soft tissue delineation. Treatment planning CTs (i.e., CT simulation scan) are redundant if a synthetic CT (sCT) can be generated from the MRI to provide the patient positioning and electron density information. Unsupervised deep learning (DL) models like CycleGAN are widely used in MR-to-sCT conversion, when paired patient CT and MR image datasets are not available for model training. However, compared to supervised DL models, they cannot guarantee anatomic consistency, especially around bone. PURPOSE: The purpose of this work was to improve the sCT accuracy generated from MRI around bone for MROP. METHODS: To generate more reliable bony structures on sCT images, we proposed to add bony structure constraints in the unsupervised CycleGAN model's loss function and leverage Dixon constructed fat and in-phase (IP) MR images. Dixon images provide better bone contrast than T2-weighted images as inputs to a modified multi-channel CycleGAN. A private dataset with a total of 31 prostate cancer patients were used for training (20) and testing (11). RESULTS: We compared model performance with and without bony structure constraints using single- and multi-channel inputs. Among all the models, multi-channel CycleGAN with bony structure constraints had the lowest mean absolute error, both inside the bone and whole body (50.7 and 145.2 HU). This approach also resulted in the highest Dice similarity coefficient (0.88) of all bony structures compared with the planning CT. CONCLUSION: Modified multi-channel CycleGAN with bony structure constraints, taking Dixon-constructed fat and IP images as inputs, can generate clinically suitable sCT images in both bone and soft tissue. The generated sCT images have the potential to be used for accurate dose calculation and patient positioning in MROP radiation therapy.


Assuntos
Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Pelve , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA