Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 14(10): 671, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821451

RESUMO

Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Ubiquitinação , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Ligases/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
3.
Mol Cell ; 83(22): 4123-4140.e12, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37848033

RESUMO

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.


Assuntos
Ligases , Melanoma , Humanos , Células HeLa , Ubiquitinação , Ubiquitinas
4.
Nat Commun ; 14(1): 3050, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237031

RESUMO

Activation of tumor-intrinsic innate immunity has been a major strategy for improving immunotherapy. Previously, we reported an autophagy-promoting function of the deubiquitinating enzyme TRABID. Here, we identify a critical role of TRABID in suppressing anti-tumor immunity. Mechanistically, TRABID is upregulated in mitosis and governs mitotic cell division by removing K29-linked polyubiquitin chain from Aurora B and Survivin, thereby stabilizing the entire chromosomal passenger complex. TRABID inhibition causes micronuclei through a combinatory defect in mitosis and autophagy and protects cGAS from autophagic degradation, thereby activating the cGAS/STING innate immunity pathway. Genetic or pharmacological inhibition of TRABID promotes anti-tumor immune surveillance and sensitizes tumors to anti-PD-1 therapy in preclinical cancer models in male mice. Clinically, TRABID expression in most solid cancer types correlates inversely with an interferon signature and infiltration of anti-tumor immune cells. Our study identifies a suppressive role of tumor-intrinsic TRABID in anti-tumor immunity and highlights TRABID as a promising target for sensitizing solid tumors to immunotherapy.


Assuntos
Neoplasias , Nucleotidiltransferases , Proteases Específicas de Ubiquitina , Animais , Masculino , Camundongos , Autofagia , Imunidade Inata , Mitose , Neoplasias/tratamento farmacológico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
5.
J Am Chem Soc ; 144(30): 13888-13894, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857020

RESUMO

Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.


Assuntos
Aquaporinas , Príons , Amiloide/química , Animais , Cricetinae , Microscopia Crioeletrônica , Peptídeos , Proteínas Priônicas , Príons/química
6.
Protein Sci ; 31(5): e4304, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481643

RESUMO

Escherichia coli glutamine synthetase (EcGS) spontaneously forms a dodecamer that catalytically converts glutamate to glutamine. EcGS stacks with other dodecamers to create a filament-like polymer visible under transmission electron microscopy. Filamentous EcGS is induced by environmental metal ions. We used cryo-electron microscopy (cryo-EM) to decipher the structure of metal ion (nickel)-induced EcGS helical filament at a sub-3Å resolution. EcGS filament formation involves stacking of native dodecamers by chelating nickel ions to residues His5 and His13 in the first N-terminal helix (H1). His5 and His13 from paired parallel H1 helices provide salt bridges and hydrogen bonds to tightly stack two dodecamers. One subunit of the EcGS filament hosts two nickel ions, whereas the dodecameric interface and the ATP/Mg-binding site both host a nickel ion each. We reveal that upon adding glutamate or ATP for catalytic reactions, nickel-induced EcGS filament reverts to individual dodecamers. Such tunable filament formation is often associated with stress responses. Our results provide detailed structural information on the mechanism underlying reversible and tunable EcGS filament formation.


Assuntos
Escherichia coli , Glutamato-Amônia Ligase , Trifosfato de Adenosina , Microscopia Crioeletrônica , Glutamato-Amônia Ligase/química , Glutamatos , Substâncias Macromoleculares , Metais , Níquel
7.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35446349

RESUMO

Subcellular localization of the deubiquitinating enzyme BAP1 is deterministic for its tumor suppressor activity. While the monoubiquitination of BAP1 by an atypical E2/E3-conjugated enzyme UBE2O and BAP1 auto-deubiquitination are known to regulate its nuclear localization, the molecular mechanism by which BAP1 is imported into the nucleus has remained elusive. Here, we demonstrated that transportin-1 (TNPO1, also known as Karyopherin ß2 or Kapß2) targets an atypical C-terminal proline-tyrosine nuclear localization signal (PY-NLS) motif of BAP1 and serves as the primary nuclear transporter of BAP1 to achieve its nuclear import. TNPO1 binding dissociates dimeric BAP1 and sequesters the monoubiquitination sites flanking the PY-NLS of BAP1 to counteract the function of UBE2O that retains BAP1 in the cytosol. Our findings shed light on how TNPO1 regulates the nuclear import, self-association, and monoubiquitination of BAP1 pertinent to oncogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , beta Carioferinas , Núcleo Celular/metabolismo , Humanos , Sinais de Localização Nuclear/metabolismo , Prolina/metabolismo , Tirosina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , beta Carioferinas/metabolismo
8.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182242

RESUMO

Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.


Assuntos
Polímeros/química , Ubiquitina/química , Ubiquitinação , Animais , Humanos , Espectrometria de Massas , Peptídeos/química , Fosforilação , Complexo de Endopeptidases do Proteassoma/química , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
9.
Nat Commun ; 7: 12907, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698423

RESUMO

Elimination of misfolded proteins is crucial for proteostasis and to prevent proteinopathies. Nedd4/Rsp5 emerged as a major E3-ligase involved in multiple quality control pathways that target misfolded plasma membrane proteins, aggregated polypeptides and cytosolic heat-induced misfolded proteins for degradation. It remained unclear how in one case cytosolic heat-induced Rsp5 substrates are destined for proteasomal degradation, whereas other Rsp5 quality control substrates are otherwise directed to lysosomal degradation. Here we find that Ubp2 and Ubp3 deubiquitinases are required for the proteasomal degradation of cytosolic misfolded proteins targeted by Rsp5 after heat-shock (HS). The two deubiquitinases associate more with Rsp5 upon heat-stress to prevent the assembly of K63-linked ubiquitin on Rsp5 heat-induced substrates. This activity was required to promote the K48-mediated proteasomal degradation of Rsp5 HS-induced substrates. Our results indicate that ubiquitin chain editing is key to the cytosolic protein quality control under stress conditions.


Assuntos
Citosol/metabolismo , Enzimas Desubiquitinantes/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citosol/química , Endopeptidases/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteólise , Proteínas Recombinantes/química , Temperatura , Transativadores , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Nat Chem Biol ; 12(7): 523-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27182664

RESUMO

Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like modifiers (Ubls), orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a wide range of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Similarly to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade, UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe 'hops' and 'traps' catalytically active Ub-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activity in living cells, presents novel and versatile tools to interrogate Ub and Ubl cascades.


Assuntos
Sondas Moleculares/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Células HeLa , Humanos , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
11.
J Biol Chem ; 290(39): 23875-87, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26245901

RESUMO

Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética
12.
Proteins ; 81(5): 874-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23280569

RESUMO

MazF is an mRNA interferase that cleaves mRNAs at a specific RNA sequence. MazF from E. coli (MazF-ec) cleaves RNA at A^CA. To date, a large number of MazF homologs that cleave RNA at specific three- to seven-base sequences have been identified from bacteria to archaea. MazF-ec forms a dimer, in which the interface between the two subunits is known to be the RNA substrate-binding site. Here, we investigated the role of the two loops in MazF-ec, which are closely associated with the interface of the MazF-ec dimer. We examined whether exchanging the loop regions of MazF-ec with those from other MazF homologs, such as MazF from Myxococcus xanthus (MazF-mx) and MazF from Mycobacterium tuberculosis (MazF-mt3), affects RNA cleavage specificity. We found that exchanging loop 2 of MazF-ec with loop 2 regions from either MazF-mx or MazF-mt3 created a new cleavage sequence at (A/U)(A/U)AA^C in addition to the original cleavage site, A^CA, whereas exchanging loop 1 did not alter cleavage specificity. Intriguingly, exchange of loop 2 with 8 or 12 consecutive Gly residues also resulted in a new RNA cleavage site at (A/U)(A/U)AA^C. The present study suggests a method for expanding the RNA cleavage repertoire of mRNA interferases, which is crucial for potential use in the regulation of specific gene expression and for biotechnological applications.


Assuntos
Proteínas de Ligação a DNA/química , Endorribonucleases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , Myxococcus xanthus/enzimologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbiologia Industrial , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Myxococcus xanthus/química , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Peptídeos/metabolismo , RNA Bacteriano/química , RNA Mensageiro/química , Alinhamento de Sequência
14.
J Biol Chem ; 278(46): 46007-13, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12952958

RESUMO

The flavivirus envelope protein is the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. We have determined the solution structure of the major antigenic domain (domain III) of the Japanese encephalitis virus (JEV) envelope protein. The JEV domain III forms a beta-barrel type structure composed of six antiparallel beta-strands resembling the immunoglobulin constant domain. We have also identified epitopes of the JEV domain III to its neutralizing antibody by chemical shift perturbation measurements. Site-directed mutagenesis experiments are performed to confirm the NMR results. Our study provides a structural basis for understanding the mechanism of immunologic protection and for rational design of vaccines effective against flaviviruses.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/metabolismo , Flavivirus/química , Produtos do Gene env/química , Sequência de Aminoácidos , Anticorpos/química , Anticorpos Monoclonais , Antígenos/química , Epitopos , Flavivirus/metabolismo , Produtos do Gene env/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA