Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 149: 138-45, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903292

RESUMO

AIMS: To determine the role of sialylation on α5ß1 and α2ß1 integrins in the regulation of adhesion between breast cancer cells and extracellular matrix (ECM). MAIN METHODS: Static cell adhesion assays were performed to quantify avidity of breast cancer cells to ECM. The effects of sialidases on α2,6 sialylation was assessed by flow cytometry using biotin conjugated Sambucus nigra lectin. Lectin affinity assays were used to determine expression of α2,6 sialylated integrins. Cell migration and invasion were investigated by wound healing and transwell invasion assays. KEY FINDINGS: α2, α5 and ß1 integrins had considerable α2,6 sialylation on MDA-MB-231 cells, whereas signals from MCF-7 cells were undetectable. Cleavage of α2,6 sialylation increased adhesion of MDA-MB-231 cells to ECM, while adhesion of MCF-7 cells was unaffected, consistent with the latter's lack of endogenous α2,6 sialylated surface integrins. Neither surface expression of α2ß1 and α5ß1 integrins, nor activated ß1 integrin, changed in MDA-MB-231 cells after sialidase treatment. However, sialidase treatment did not have significant impact on migration or invasion of MDA-MB-231 cells. SIGNIFICANCE: Cell adhesion is an important early step of cancer metastasis, yet the roles of sialylation in regulating integrin-mediated breast cancer cell adhesion in comparison to migration and invasion are not well-understood. Our data suggest desialylation of α2,6-sialylated integrins increases adhesion, but not migration or invasion, of MDA-MB-231 cells to ECM without altering integrin expression. It should be considered that α2,6 sialylation may play different roles in regulating cell adhesion of different cancer cells when developing potential therapeutics targeting α2,6 sialylation.


Assuntos
Adesão Celular/fisiologia , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Neuraminidase/metabolismo , Feminino , Humanos , Células MCF-7
2.
Free Radic Biol Med ; 81: 77-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578653

RESUMO

Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Superóxido Dismutase/genética , Adaptação Fisiológica , Animais , Linhagem Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/enzimologia , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Fosforilação/efeitos dos fármacos , Tolerância a Radiação , Radiação Ionizante , Transdução de Sinais , Superóxido Dismutase/metabolismo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA