Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1382121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045590

RESUMO

Sedum plumbizincicola is a renowned hyperaccumulator of cadmium (Cd), possesses significant potential for eco-friendly phytoremediation of soil contaminated with Cd. Nevertheless, comprehension of the mechanisms underpinning its Cd stress response remains constrained, primarily due to the absence of a comprehensive genome sequence and an established genetic transformation system. In this study, we successfully identified a novel protein that specifically responds to Cd stress through early comparative iTRAQ proteome and transcriptome analyses under Cd stress conditions. To further investigate its structure, we employed AlphaFold, a powerful tool for protein structure prediction, and found that this newly identified protein shares a similar structure with Arabidopsis AtSIZ1. Therefore, we named it Sedum plumbizincicola SIZ1 (SpSIZ1). Our study revealed that SpSIZ1 plays a crucial role in positively regulating Cd tolerance through its coordination with SpABI5. Overexpression of SpSIZ1 significantly enhanced plant resistance to Cd stress and reduced Cd accumulation. Expression pattern analysis revealed higher levels of SpSIZ1 expression in roots compared to stems and leaves, with up-regulation under Cd stress induction. Importantly, overexpressing SpSIZ1 resulted in lower Cd translocation factors (Tfs) but maintained relatively constant Cd levels in roots under Cd stress, leading to enhanced Cd stress resistance in plants. Protein interaction analysis revealed that SpSIZ1 interacts with SpABI5, and the expression of genes responsive to abscisic acid (ABA) through SpABI5-dependent signaling was significantly up-regulated in SpSIZ1-overexpressing plants with Cd stress treatment. Collectively, our results illustrate that SpSIZ1 interacts with SpABI5, enhancing the expression of ABA downstream stress-related genes through SpABI5, thereby increasing Cd tolerance in plants.

2.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739960

RESUMO

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Assuntos
Biodegradação Ambiental , Cádmio , Proteínas de Plantas , Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
3.
Environ Pollut ; 346: 123704, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442823

RESUMO

East Yunnan province in southwest China is a region with elevated natural abundance (high geological background levels) of Cd due to high metal (loid) contents in the soils. Enzyme activities are useful indicators of metal (loid) toxicity in contaminated soils and whether Cd inhibits enzyme activities in paddy soils in high geological background areas is of considerable public concern. A pot experiment combined with field investigation was conducted to assess the effects of Cd on six soil enzymes that are essential to the cycling of C, N, and P in soils. Inhibitory effects of Cd fractions on enzyme activities were assessed using ecological dose-response models. The impact of soil properties on the inhibition of sensitive soil enzymes by Cd were assessed using linear and structural equation models. Cadmium was enriched in the paddy soils with 72.2 % of soil samples from high geological background areas exceeding the Chinese threshold values (GB 15618-2018) of Cd. Enzyme responses to Cd contamination varied markedly with a negative response by catalase but a positive response by invertase. Urease, ß-glucosidase, and alkaline phosphatase activities were stimulated at low Cd concentrations and inhibited at high concentrations. The average inhibition ratios of ß-glucosidase, urease, and catalase in high Cd levels were 19.9, 38.9, and 51.9%, respectively. Ecological dose-response models indicate that catalase and urease were the most Cd-sensitive of the enzymes studied and were suitable indicators of soil quality in high geological background areas. Structural equation modeling (SEM) indicates that soil properties influenced sensitive enzymes through various pathways, indicating that soil properties were factors determining Cd inhibition of enzyme activities. This suggests that Cd concentrations and soil physicochemical properties under a range of environmental conditions should be considered in addressing soil Cd pollution.


Assuntos
Celulases , Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Catalase , Urease/metabolismo , Poluentes do Solo/análise , China , Oryza/metabolismo
4.
Environ Sci Pollut Res Int ; 31(16): 23790-23801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429592

RESUMO

Accurate prediction of cadmium (Cd) ecotoxicity to and accumulation in soil biota is important in soil health. However, very limited information on Cd ecotoxicity on naturally contaminated soils. Herein, we investigated soil Cd ecotoxicity using Folsomia candida, a standard single-species test animal, in 28 naturally Cd-contaminated soils, and the back-propagation neural network (BPNN) model was used to predict Cd ecotoxicity to and accumulation in F. candida. Soil total Cd and pH were the primary soil properties affecting Cd toxicity. However, soil pH was the main factor when the total Cd concentration was < 3 mg kg-1. Interestingly, correlation analysis and the K-spiked test confirmed nutrient potassium (K) was essential for Cd accumulation, highlighting the significance of studying K in Cd accumulation. The BPNN model showed greater prediction accuracy of collembolan survival rate (R2 = 0.797), reproduction inhibitory rate (R2 = 0.827), body Cd concentration (R2 = 0.961), and Cd bioaccumulation factor (R2 = 0.964) than multiple linear regression models. Then the developed BPNN model was used to predict Cd ecological risks in 57 soils in southern China. Compared to multiple linear regression models, the BPNN models can better identify high-risk regions. This study highlights the potential of BPNN as a novel and rapid tool for the evaluation and monitoring of Cd ecotoxicity in naturally contaminated soils.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Cádmio/toxicidade , Cádmio/análise , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Redes Neurais de Computação , Reprodução
5.
Int J Phytoremediation ; 26(2): 241-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37463004

RESUMO

Sedum plumbizincicola is a cadmium (Cd) and zinc hyperaccumulator that can activate Cd by rhizosphere acidification. However, there is little understanding of the Cd leaching risk from polluted soil during phytoextraction process. Here, pot and column experiments were conducted to monitor soil Cd leaching characteristics under different rainfall simulation conditions during S. plumbizincicola phytoextraction. Soil Cd leaching increased significantly with increasing simulated rainfall intensity. Compared with normal rainfall (NR), weak rainfall (WR) resulted in a 34.3% decrease in Cd uptake by S. plumbizincicola and also led to a 68.7% decline in Cd leaching. In contrast, Cd leaching under heavy rainfall (HR) was 2.12 times that of NR in the presence of S. plumbizincicola. After two successive growing periods, phytoextraction resulted in a 53.5-66.4% decline in the amount of soil Cd leached compared with controls in which S. plumbizincicola was absent. Even compared with maize cropping as a control, S. plumbizincicola did not instigate a significant increase in Cd leaching. The contribution of Cd leaching loss to the decline in soil total Cd concentration was negligible after phytoextraction in the pot experiment. Overall, the results contribute to our understanding of soil Cd leaching risk by phytoextraction with S. plumbizincicola.


Repeated phytoextraction by hyperaccumulator Sedum plumbizincicola is an important remediation technology to remove Cd from contaminated soils. At the same time, Sedum plumbizincicola can also activate soil Cd by rhizosphere acidification. However, studies on the leaching risk of soil activated Cd during the phytoextraction process are very few. This study looked at the effects of Sedum plumbizincicola growth on soil Cd leaching with the changes in rainfall simulation and plant type. Results showed that repeated phytoextraction with Sedum plumbizincicola did not increase Cd leaching from contaminated soil.


Assuntos
Sedum , Poluentes do Solo , Cádmio , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
6.
Huan Jing Ke Xue ; 44(9): 5196-5203, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699837

RESUMO

To explore the safe utilization technology of farmland polluted by the heavy metals cadmium (Cd) and lead (Pb) and to realize the safe production of agricultural products, a pot experiment was conducted to investigate the effects of two soil passivators and five foliar inhibitors on Cd and Cd-accumulation and quality of lettuce with low Pb and Cd accumulation (KCW). The results showed that different control measures had different effects on the soil pH value of lettuce, and the application of 45 g·m-2biochar-based passivator had the most significant difference in improving the soil pH value, which was increased by 0.8 units compared with that in CK. By using 72 g·m-2 of humic acid passivator yielded notable difference in reducing the soil pH value of lettuce. A reduction of 0.25 units was achieved compared with that in CK. Among all the control measures, the application of 45 g·m-2 biocharcoal-based passivation agent had the best effect on reducing soil available Cd content, which was significantly reduced by 53% compared with that in CK, and the application of 135 g·m-2biocharcoal-based passivation agent had the best effect on reducing soil available Pb content, which was significantly reduced by 64% compared with that in CK. Spraying 0.8% FAK-Zn foliar inhibitor not only had the best control effect on reducing Cd and Pb contents in the edible parts of lettuce, which were significantly reduced by 77% and 60%, respectively, compared with that in CK, but it also significantly reduced Cd and Pb enrichment coefficients and transport coefficients from the root to the edible parts of the lettuce. Different control measures had different effects on the nutritional quality of lettuce, and 0.4% FAK-Zn foliar inhibitor had the best effect on soluble protein. The 0.6% FAK-Zn had the best effect on soluble sugar, and the 0.4% FAK-Zn inhibitor had the best effect on vitamin C content. The application of biocarbon-based passivator could effectively repair lettuce soil polluted by Cd and Pb, whereas the application of FAK-Zn leaf surface inhibitor could effectively inhibit the accumulation, absorption, and transfer of Cd and Pb in lettuce; improve the nutritional quality of lettuce; provide a theoretical basis for safe production of vegetables polluted by heavy metals; and promote the recycling of resources and environment.


Assuntos
Cádmio , Lactuca , Chumbo , Verduras , Solo
7.
Sci Total Environ ; 905: 167216, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734600

RESUMO

Phytoextraction with Sedum plumbizincicola is an in-situ, environmentally friendly and highly efficient remediation technique for slightly Cd-polluted soils but it remains a challenge to remediate highly Cd-polluted soils under field conditions. Here, an 8-ha field experiment was conducted to evaluate the feasibility of repeated phytoextraction by S. plumbizincicola of a highly Cd-polluted acid agricultural soil (pH 5.61, [Cd] 2.58 mg kg-1) in Yunnan province, southwest China. Mean shoot dry biomass production, Cd concentration and Cd uptake were 1.95 t ha-1, 170 mg kg-1 and 339 g ha-1 at the first harvest, and 0.91 t ha-1, 172 mg kg-1 and 142 g ha-1 at the second harvest. After two seasons of phytoextraction, soil total and CaCl2-extractable Cd concentrations decreased from 2.58 ± 0.69 to 1.53 ± 0.43 mg kg-1 and 0.22 ± 0.12 to 0.14 ± 0.07 mg kg-1, respectively. Stepwise multiple linear regression analysis shows that the shoot Cd concentration and uptake of S. plumbizincicola were positively related to soil CaCl2-extractable Cd concentrations, especially in the first crop. A negative relationship indicates that soil organic matter content played an important role in soil Cd availability and shoot Cd concentration in the first crop. In addition, the rhizosphere effect on soil CaCl2-extractable Cd concentration was negatively correlated with soil pH in the first crop. The accuracy of the calculation of soil Cd phytoextraction efficiency at field scale depends on all of the following factors being considered: shoot Cd uptake, cropping pattern, standardized sampling points, and the leaching and surface runoff of Cd. Phytoextraction with S. plumbizincicola is a feasible technique for efficient Cd removal from highly polluted soils and wide variation in soil properties can influence phytoextraction efficiency at the field scale.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Zinco/análise , Sedum/química , Cloreto de Cálcio , Poluentes do Solo/análise , Biodegradação Ambiental , China , Solo/química
8.
Environ Sci Technol ; 57(14): 5891-5902, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988089

RESUMO

This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species Sedum plumbizincicola. To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δ114/110Cd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The Δ66Znplant-initial solution or Δ66Znplant-final solution values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (Δ114/110Cd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (Δ114/110Cd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the Δ114/110Cdtranslocation values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in S. plumbizincicola but had little effect on those of Zn.


Assuntos
Cádmio , Sedum , Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Isótopos/análise , Isótopos/metabolismo , Isótopos/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Isótopos de Zinco/análise , Isótopos de Zinco/metabolismo , Isótopos de Zinco/farmacologia
9.
Sci Total Environ ; 869: 161774, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708830

RESUMO

Identification of potential toxic element (PTE) sources and their specific human health risk is critical to the management of PTEs in soils. In this study, multi-medium were collected from a mercury­thallium polymetallic mining area in Southwestern China. Hg isotope technique together with positive matrix factorization (PMF) model was used to identify PTE sources and assess their source-oriented health risk. Results showed that among the studied PTEs, this study area presented high pollution of Hg, Tl and As, with higher concentrations than their corresponding background values of Guizhou province, yet their average concentrations in covering soils were significantly lower than those in the natural soils. The Tl in coix grains should also be paid more attention due to its high concentration. Both natural and covering soils had different Hg isotope composition with tailings, while sediments have similar Hg isotope fractionation with covering soils. According to the PMF model, three sources in both natural and covering soils were apportioned and Hg, Tl and As were mainly influenced by the historical mining activities, which also confirmed by their Hg isotope signatures. The contributions of historical mining activities accounted for 40 % and 20 % of the PTEs in natural and covering soils, respectively. The assessment of source-specific health risks suggested that the non-carcinogenic risk of Hg, Tl and As was much higher than other elements. Historical mining activities were regarded as the major contributor to health risks (79 % and 76 % for natural soils and 50 % and 59 % for covering soils, respectively). This indicated that the restoration of coveing soils indeed decreased the health risk in this study area. These findings thus highlight the importance of ongoing monitoring of covering soils in the polymetallic mining area, which is imperative for preferably assessing the health risk of PTEs in similar mining area worldwide.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Mercúrio/análise , Tálio , Isótopos de Mercúrio , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , China , Medição de Risco , Metais Pesados/análise
10.
Sci Total Environ ; 863: 160917, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36529394

RESUMO

Microbial communities are closely related to plant performance and numerous studies have shown their involvement with the growth and development of host plants, resistance to pathogen invasion and adaptation to environmental stress. Here we described in detail the ecological process of the microbial community assembly in hyperaccumulator plant Sedum plumbizincicola. We divided the microbiota into four ecological compartments (bulk soil, rhizosphere, root endosphere and aboveground endosphere). The results showed that host selection strongly controlled the aggregation of microbial community. So that microbes occupied different niches from the bulk soil to the aboveground endosphere, and bacterial diversity and network complexity decreased gradually. Soil types were the second influencing factor, especially for the microbial community in the root endosphere. The SourceTracker analysis further confirmed the vertical migration of microbes from bulk soil to aboveground endosphere. In addition, under the condition of heavy metal pollution, the microbial community of S. plumbizincicola tended to form a microbial pool dominated by Proteobacteria and Actinobacteria. Ellin6067, Sphingomonas, Ralstonia, SC-I-84_uncultured bacterium, Burkholderiaceae_Undibacterium and Pedosphaeraceae_uncultured bacterium etc. were identified as the vital biomarker taxa. Among these genera, the relative abundance of last three was significantly positively correlated with the activation and transfer of cadmium, and they mainly enriched in paddy soil. This study provides evidence for the mechanism by which the microbial community assembly occurs and experience for regulating the microbial community and increasing the accumulation efficiency of potentially toxic metals in S. plumbizincicola.


Assuntos
Microbiota , Sedum , Poluentes do Solo , Cádmio/análise , Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Bactérias , Plantas , Raízes de Plantas/microbiologia
11.
Environ Pollut ; 314: 120327, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195194

RESUMO

Cadmium (Cd) isotope fractionation patterns within soil profiles and the underlying mechanisms remain unclear and poorly documented. Here, Cd concentrations and isotope compositions of metal ore, surface soils and soil profile samples around a lead-zinc mine in southwest China were determined, and the relationships between soil properties and Cd isotope fractionation within the soil profiles were investigated. Cadmium concentrations of eleven surface soil samples were 0.49-66.1 mg kg-1 and the samples with high Cd concentrations had Cd isotope compositions similar to the metal ore (δ114/110Cd = 0.02‰), indicating that mining activity was the main Cd source at the study areas. Within three soil profiles with different Cd pollution levels the δ114/110Cd values gradually increased with increasing depth from 0 to 40 cm (Δ114/110Cd = 0.08-0.18‰), reaching a maximum at 30-40 cm depth, and then remained fairly constant or decreased with increasing soil depth below 40 cm. Soil δ114/110Cd values were negatively correlated with free iron and manganese oxides contents, which decreased at 0-40 cm depth then increased below 40 cm. This indicates that light Cd isotopes within 0-40 cm depth preferentially migrated downward with free iron and manganese oxides, leaving the soils at a depth of 0-40 cm enriched in heavy Cd isotopes. At 40-90 cm depth the preferential retention of heavy Cd isotopes by hydroxides may be responsible for the gradual decrease in δ114/110Cd values with increasing soil depth. These observations demonstrate that the vertical migration of Cd can induce detectable isotope fractionation within soil profiles and alter the δ114/110Cd values including those of the surface soils. Our study highlights the need to consider Cd mobilization and transport in soil profiles when tracing metal sources using isotope techniques.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , Manganês , Isótopos/análise , Poluentes do Solo/análise , Zinco/análise , Ferro , Óxidos , China , Monitoramento Ambiental/métodos
12.
J Environ Manage ; 324: 116336, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162317

RESUMO

Particulate cadmium (Cd) and zinc (Zn) are ubiquitous in agricultural soils of Pb-Zn mining regions. Water management serves as an important agronomic measure altering the bioavailability of Zn and Cd in soils, but how this affects particulate Cd and Zn and the underlying mechanisms remain largely unknown. Microcosm soil incubation combined with spectroscopic and microscopic characterization was conducted. During a two-year-long incubation period we observed that the concentrations of soil CaCl2-extractable Zn and Cd increased 3-10 times in sphalerite-spiked soils and 1-2 times in smithsonite-spiked soils under periodic flooding conditions due to the long-term dissolution of sphalerite (SP) and smithsonite (SM). However, the increase in the concentration of CaCl2-extractable metals (Zn: from 0.607 mg kg-1 to 1.051 mg kg-1 and Cd: from 0.047 mg kg-1 to 0.119 mg kg-1) was found only in SP-treatment under continuous flooding conditions, indicating the mobilization of metals. Ultrafiltration analysis shows that the nanoparticulate fraction of Zn and Cd in soil pore water increased 5 and 7 times in SP-treatments under continuous flooding conditions, suggesting the increment of metal pools in soil pore water. HRTEM-EDX-SAED further reveals that these nanoparticles were mainly crystalline ZnS and Zn-bearing sulfate nanoparticles in the SP-treatment and amorphous ZnCO3 and ZnS nanoparticles in the SM-treatment. Therefore, the formation of the stable crystalline Zn-bearing nanoparticles in the SP-treatment may explain the elevation of the concentration of soil CaCl2-extractable Zn and Cd under continuous flooding. The potential mobility of particulate metals should therefore be expected in scenarios of continuous flooding such as paddy soils and wetland systems.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/química , Solo/química , Zinco/química , Poluentes do Solo/análise , Água/análise , Cloreto de Cálcio , Ácidos , Abastecimento de Água , Metais Pesados/análise
13.
Front Plant Sci ; 13: 859386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574076

RESUMO

Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb) hyperaccumulator native to Southeast China, is potentially useful for the phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP) transcription factors play vital roles in plant growth, development, and abiotic stress responses. However, there has been minimal research on the effects of Cd stress on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were identified in the S. plumbizincicola genome and then classified into 12 subgroups according to their similarity to bZIP genes in Arabidopsis. Gene structure and conserved motif analyses showed that SpbZIP genes within the same subgroup shared similar intron-exon structures and motif compositions. In total, eight pairs of segmentally duplicated SpbZIP genes were identified, but there were no tandemly duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive, and plant development-related cis-acting elements were detected in the SpbZIP promoter sequences. Expression profiles derived from RNA-seq and quantitative real-time PCR analyses indicated that the expression levels of most SpbZIP genes were upregulated under Cd stress conditions. Furthermore, a gene co-expression network analysis revealed that most edge genes regulated by hub genes were related to metal transport, responses to stimuli, and transcriptional regulation. Because its expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was selected for a functional characterization to elucidate its role in the root response to Cd stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves, SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation, protecting the photosynthetic apparatus, and decreasing the Cd content. These findings may provide insights into the potential roles of the bZIP family genes during the S. plumbizincicola response to Cd stress.

14.
J Hazard Mater ; 429: 128313, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35074749

RESUMO

Cadmium (Cd)-bearing sphalerite and smithsonite ore particles are ubiquitous in soils near metal-mining areas. Previous studies indicate that smithsonite is more readily dissolved in acidic waters and soils than sphalerite but the mobility of Cd and zinc (Zn) derived from these ores in soils is unknown. Using microcosm incubation experiments and microscopic and spectroscopic analysis, we found that the mobility of Cd and Zn derived from smithsonite is higher than from sphalerite. The mobilization rates of Cd (16.6%) and Zn (13.7%) released from smithsonite in soils after 30-day incubation experiments were higher than those from sphalerite (Cd, ~ 1.42%; Zn, ~ 0.75%). Moreover, the percentages of Cd2+ and Zn2+ in soil pore water showed a dynamic increase in smithsonite-spiked treatments but a decrease in sphalerite-spiked treatments. HRTEM-EDX-SAED analysis further indicates the occurrence of dynamic transformation of amorphous Cd and Zn species in soil pore water to crystalline ZnS and iron oxides in sphalerite-spiked soil but crystalline ZnCO3 nanoparticles were dynamically transformed to amorphous metal-bearing species in smithsonite-spiked soil. The opposite transformation trends in pore water of Zn ore-spiked soils provide new insights into the Cd environmental risks in soils affected by Zn mining.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Sulfetos , Zinco/química , Compostos de Zinco
15.
Ecotoxicol Environ Saf ; 230: 113149, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974361

RESUMO

Sedum plumbizincicola, a cadmium (Cd) hyperaccumulating herbaceous plant, can accumulate large amounts of Cd in the above-ground tissues without being poisoned. However, the molecular mechanisms regulating the processes are not fully understood. In this study, Transcriptional and proteomic analyses were integrated to investigate the response of S. plumbizincicola plants to Cd stress and to identify key pathways that are potentially responsible for Cd tolerance and accumulation. A total of 630 DAPs (differentially abundant proteins, using fold change >1.5 and adjusted p-value <0.05) were identified from Tandem Mass Tag (TMT)- based quantitative proteomic profiling, which were enriched in processes including phenylpropanoid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of secondary metabolites. Combined with the previous transcriptomic study, 209 genes and their corresponding proteins showed the identical expression pattern. The identified genes/proteins revealed the potential roles of several metabolism pathways, including phenylpropanoid biosynthesis, oxidative phosphorylation, phagosome, and glutathione metabolism, in mediating Cd tolerance and accumulation. Lignin staining and Cd accumulation assay of the transgenic lines over-expressing a selected Cd up-regulated gene SpFAOMT (Flavonoid 3',5'-methyltransferase) showed its functions in adapting to Cd stress, and provided insight into its role in lignin biosynthesis and Cd accumulation in S. plumbizincicola during Cd stress.

16.
Chemosphere ; 287(Pt 3): 132302, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563781

RESUMO

Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mechanism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Proteínas de Membrana Transportadoras , Proteoma , Sedum/metabolismo , Poluentes do Solo/análise
17.
J Hazard Mater ; 416: 126260, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492996

RESUMO

Cadmium is an extremely toxic substance known to cause serious health problems. The uptake of Cd in plants is critically affected by dissolved Cd in soil porewater, controlled by soil physicochemical properties. Rhizo-availability of Cd is assumed, as the Cd fraction is found on the plasma membrane of surface root cells. Based on the theory of Cd transformation in soil-crop systems, we established a novel combined mechanistic model related to soil, soil solutions, and crops. The combined model comprises a multisurface model (MSMs; solid adsorbent and porewater) and the Gouy-Chapman-Stern model (GCS; porewater and root surface). The results suggested that in mildly contaminated soil samples, optimum prediction was achieved when DTPA-extractable Cd was used as input variable (R2 = 0.723). Our approach was superior to single-step model calculation (MSMs: R2 = 0.613; GCS: R2 = 0.629) and prediction based on extractable soil Cd (R2 = 0.281). Introducing DTPA extraction expanded the range of model applications at different soil pHs. Our proposed mechanism model was based on soil physicochemical properties for Cd migration from soil to cabbage. Our model showed promise in predicting Cd bioavailability in soil with a wide pH range and evaluating soil risk near the standard Cd safety level.


Assuntos
Brassica , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Solo , Poluentes do Solo/análise
18.
Fish Shellfish Immunol ; 117: 220-227, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418553

RESUMO

This study aimed to evaluate that dietary protein levels and culture salinity levels affect the health status of juvenile genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Graded protein levels of six diets were prepared, ranging from 18.20% to 49.49% (dry basis), and were used in cultured GIFT at two salinity levels (0‰ and 8‰) for 8 weeks. The results suggested that appropriate protein levels reduced pro-inflammatory gene expressions in the intestine including interleukin 1ß (IL-1ß), interleukin 8 (IL-8) and tumour necrosis factor-α (TNF-α) mRNA levels at two salinity levels (P < 0.05). 8‰ salinity significantly decreased the expression levels of IL-1ß, TNF-α and nuclear factor-kappa B (NF-κB) (P < 0.05). The anti-inflammatory factor interleukin 10 (IL-10) was significantly increased by 36.42% protein level (P < 0.05). Regarding antioxidant capacity, appropriate protein levels and 8‰ salinity significantly improved the antioxidant capacity of fish by regulating the activities of intestinal total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and the levels of glutathione (GSH) and malondialdehyde (MDA). Furthermore, appropriate protein levels and 8‰ salinity also significantly enhanced the antioxidant gene expressions associated with the Nrf2/keap1 signaling pathway by regulating the expression levels of heme oxygenase-1 (HO-1), GPx, catalase (CAT) and superoxide dismutase (SOD). According to GPx activities and the mRNA levels of IL-10, the optimum dietary protein levels for GIFT juveniles were 31.12%-32.18% (0‰) and 34.25-35.38% (8‰) based on second-degree polynomial regression analysis. The present study found that appropriate protein levels and 8‰ culture salinity are critical in maintaining the health of GIFT juveniles by improving antioxidant and immune capacity.


Assuntos
Ciclídeos/imunologia , Proteínas Alimentares/administração & dosagem , Proteínas de Peixes/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Salinidade , Animais , Animais Geneticamente Modificados , Aquicultura , Ciclídeos/genética , Citocinas/imunologia , Expressão Gênica , Intestinos/imunologia , NF-kappa B/imunologia , Oxirredutases/genética , Transdução de Sinais
19.
Environ Pollut ; 289: 117943, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426179

RESUMO

Microplastics were investigated in an agricultural soil to which three types of sludge were repeatedly applied: fresh municipal sludge (FSS1), fresh mixed sludge (mainly industrial sludge) (FSS2), and dry heat-treated municipal sludge (DSS). The percentages of microplastics <1.0 mm were 24.3 and 28.7-59.1 % in unamended and amended soils, respectively. Particles of this size accounted for 47.1-60.0 % of microplastics in different sludges and polymers of particle size <100 µm occurred in all soil samples and sludges examined. Fibers were the commonest microplastic type, ranging from 66.7 to 82.5 % in soil and 89.4-97.2 % in sludges. Polyester (PES) and polypropylene (PP) accounted for ~80 % of the total microplastics found in soil and poly-(styrene:acrylate) (PS-AC) microspheres were found in all sludge-amended soil samples examined. There was also a pronounced weathering effect on the surfaces of the microplastics in soil. Nine years of repeated sludge application led to the accumulation of microplastics in the soil. The abundance of microplastics was significantly higher in the municipal sludge (149.2 ± 52.5 particles kg-1) than in the mixed (68.6 ± 21.5 particles kg-1) or dried (73.1 ± 15.4 particles kg-1) sludge and this was related to the microplastic abundance in the sludges. This field study confirms that sludges are drivers of soil microplastic pollution and measures are required to minimize the inputs of microplastics to agricultural land.


Assuntos
Microplásticos , Esgotos , Agricultura , Plásticos , Solo
20.
Bull Environ Contam Toxicol ; 107(6): 1227-1235, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34080037

RESUMO

The growth of edible crops on land that is highly polluted with potentially toxic elements is prohibited in many developed countries, but the growth of fiber or energy crops may be permitted. Here, we have evaluated metal immobilization in a maize field polluted with cadmium (Cd) and lead (Pb) to determine the thresholds of soil CaCl2-extractable Cd and Pb and to assess management options designed to maximize food safety. Based on geographical and statistical methods we found that when the soil pH was increased from 5.24 to 6.24, the soil CaCl2-extractable Cd and Pb values decreased by 47.8 and 74.7%, respectively. Soil CaCl2-extractable Pb concentrations need to be < 2.14 mg kg-1 in order to comply with the Chinese maximum permissible grain Pb concentration (< 0.2 mg kg-1). Immobilization increased the percentage of samples that were below permissible levels from 77.4% to 96.2% (grain Cd) and 90.6% to 96.2% (grain Pb) during the period 2017 to 2019. To avoid excessive or inadequacy immobilization, the spatial distribution of correlation coefficients of soil pH, CaCl2-extractable or grain Cd/Pb may be helpful in the precise management of immobilization for long-term remediation.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA