Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6620-6634, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37366045

RESUMO

Ultraviolet radiation (UVR) from the sun is a natural daytime stressor for vertebrates in both terrestrial and aquatic ecosystems. UVR effects on the physiology of vertebrates manifest at the cellular level, but have bottom-up effects at the tissue level and on whole-animal performance and behaviours. Climate change and habitat loss (i.e. loss of shelter from UVR) could interact with and exacerbate the genotoxic and cytotoxic impacts of UVR on vertebrates. Therefore, it is important to understand the range and magnitude of effects that UVR can have on a diversity of physiological metrics, and how these may be shaped by taxa, life stage or geographical range in the major vertebrate groups. Using a meta-analytical approach, we used 895 observations from 47 different vertebrate species (fish, amphibian, reptile and bird), and 51 physiological metrics (i.e. cellular, tissue and whole-animal metrics), across 73 independent studies, to elucidate the general patterns of UVR effects on vertebrate physiology. We found that while UVR's impacts on vertebrates are generally negative, fish and amphibians were the most susceptible taxa, adult and larvae were the most susceptible life stages, and animals inhabiting temperate and tropical latitudes were the most susceptible to UVR stress. This information is critical to further our understanding of the adaptive capacity of vulnerable taxon to UVR stress, and the wide-spread sublethal physiological effects of UVR on vertebrates, such as DNA damage and cellular stress, which may translate up to impaired growth and locomotor performance. These impairments to individual fitness highlighted by our study may potentially cause disruptions at the ecosystem scale, especially if the effects of this pervasive diurnal stressor are exacerbated by climate change and reduced refuge due to habitat loss and degradation. Therefore, conservation of habitats that provide refuge to UVR stress will be critical to mitigate stress from this pervasive daytime stressor.


Assuntos
Ecossistema , Raios Ultravioleta , Animais , Raios Ultravioleta/efeitos adversos , Vertebrados/fisiologia , Anfíbios
2.
Proc Biol Sci ; 289(1967): 20212077, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078359

RESUMO

Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction. Our data reveal a potentially serious emerging problem: increasing water temperatures resulting from climate warming together with endocrine disruption from plastic pollution can impact animal growth efficiency, and hence the dynamics and resilience of animal populations and the services these provide.


Assuntos
Disruptores Endócrinos , Plásticos , Animais , Compostos Benzidrílicos , Feminino , Reprodução , Água , Peixe-Zebra/fisiologia
3.
Elife ; 102021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835028

RESUMO

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.


Assuntos
Células Epiteliais , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Cultura de Vírus/métodos , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Proteólise , Sistema Respiratório/citologia , Sistema Respiratório/virologia , Serina Proteases/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(1): 426-431, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871166

RESUMO

Herein we present a concept in cancer where an immune response is detrimental rather than helpful. In the cancer setting, the immune system is generally considered to be helpful in curtailing the initiation and progression of tumors. In this work we show that a patient's immune response to their tumor can, in fact, either enhance or inhibit tumor cell growth. Two closely related autoantibodies to the growth factor receptor TrkB were isolated from cancer patients' B cells. Although highly similar in sequence, one antibody was an agonist while the other was an antagonist. The agonist antibody was shown to increase breast cancer cell growth both in vitro and in vivo, whereas the antagonist antibody inhibited growth. From a mechanistic point of view, we showed that binding of the agonist antibody to the TrkB receptor was functional in that it initiated downstream signaling identical to its natural growth factor ligand, brain-derived neurotrophic factor (BDNF). Our study shows that individual autoantibodies may play a role in cancer patients.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Neoplasias da Mama/patologia , Glicoproteínas de Membrana/imunologia , Metástase Neoplásica/imunologia , Receptor trkB/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/isolamento & purificação , Autoanticorpos/metabolismo , Autoantígenos/sangue , Autoantígenos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Proliferação de Células , Feminino , Humanos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/sangue , Camundongos , Receptor trkB/agonistas , Receptor trkB/antagonistas & inibidores , Receptor trkB/sangue , Transdução de Sinais/imunologia
5.
Nat Struct Mol Biol ; 25(2): 115-121, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396418

RESUMO

A limited arsenal of therapies is currently available to tackle the emergence of a future influenza pandemic or even to deal effectively with the continual outbreaks of seasonal influenza. However, recent findings hold great promise for the design of novel vaccines and therapeutics, including the possibility of more universal treatments. Structural biology has been a major contributor to those advances, in particular through the many studies on influenza hemagglutinin (HA), the major surface antigen. HA's primary function is to enable the virus to enter host cells, and structural work has revealed the various HA conformational forms generated during the entry process. Other studies have explored how human broadly neutralizing antibodies (bnAbs), designed proteins, peptides and small molecules, can inhibit and neutralize the virus. Here we review milestones in HA structural biology and how the recent insights from bnAbs are paving the way to design novel vaccines and therapeutics.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/química , Sítios de Ligação , Cristalografia por Raios X , Furões , Haplorrinos , Humanos , Hidroquinonas/química , Influenza Humana/terapia , Cinética , Camundongos , Modelos Moleculares , Peptídeos/química , Multimerização Proteica
6.
BMC Genomics ; 17: 108, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868371

RESUMO

BACKGROUND: The high error rate of next generation sequencing (NGS) restricts some of its applications, such as monitoring virus mutations and detecting rare mutations in tumors. There are two commonly employed sequencing library preparation strategies to improve sequencing accuracy by correcting sequencing errors: read-pairing method and tag-clustering method (i.e. primer ID or UID). Here, we constructed a homogeneous library from a single clone, and compared the variant calling accuracy of these error-correction methods. RESULT: We comprehensively described the strengths and pitfalls of these methods. We found that both read-pairing and tag-clustering methods significantly decreased sequencing error rate. While the read-pairing method was more effective than the tag-clustering method at correcting insertion and deletion errors, it was not as effective as the tag-clustering method at correcting substitution errors. In addition, we observed that when the read quality was poor, the tag-clustering method led to huge coverage loss. We also tested the effect of applying quality score filtering to the error-correction methods and demonstrated that quality score filtering was able to impose a minor, yet statistically significant improvement to the error-correction methods tested in this study. CONCLUSION: Our study provides a benchmark for researchers to select suitable error-correction methods based on the goal of the experiment by balancing the trade-off between sequencing cost (i.e. sequencing coverage requirement) and detection sensitivity.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Reprodutibilidade dos Testes
7.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686653

RESUMO

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Assuntos
Colesterol/metabolismo , Imunidade Inata , Interferon gama/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos , Interferon beta-1b , Proteínas de Membrana/metabolismo , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
8.
mBio ; 5(5): e01469-14, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25271282

RESUMO

UNLABELLED: Pairing high-throughput sequencing technologies with high-throughput mutagenesis enables genome-wide investigations of pathogenic organisms. Knowledge of the specific functions of protein domains encoded by the genome of the hepatitis C virus (HCV), a major human pathogen that contributes to liver disease worldwide, remains limited to insight from small-scale studies. To enhance the capabilities of HCV researchers, we have obtained a high-resolution functional map of the entire viral genome by combining transposon-based insertional mutagenesis with next-generation sequencing. We generated a library of 8,398 mutagenized HCV clones, each containing one 15-nucleotide sequence inserted at a unique genomic position. We passaged this library in hepatic cells, recovered virus pools, and simultaneously assayed the abundance of mutant viruses in each pool by next-generation sequencing. To illustrate the validity of the functional profile, we compared the genetic footprints of viral proteins with previously solved protein structures. Moreover, we show the utility of these genetic footprints in the identification of candidate regions for epitope tag insertion. In a second application, we screened the genetic footprints for phenotypes that reflected defects in later steps of the viral life cycle. We confirmed that viruses with insertions in a region of the nonstructural protein NS4B had a defect in infectivity while maintaining genome replication. Overall, our genome-wide HCV mutant library and the genetic footprints obtained by high-resolution profiling represent valuable new resources for the research community that can direct the attention of investigators toward unidentified roles of individual protein domains. IMPORTANCE: Our insertional mutagenesis library provides a resource that illustrates the effects of relatively small insertions on local protein structure and HCV viability. We have also generated complementary resources, including a website (http://hangfei.bol.ucla.edu) and a panel of epitope-tagged mutant viruses that should enhance the research capabilities of investigators studying HCV. Researchers can now detect epitope-tagged viral proteins by established antibodies, which will allow biochemical studies of HCV proteins for which antibodies are not readily available. Furthermore, researchers can now quickly look up genotype-phenotype relationships and base further mechanistic studies on the residue-by-residue information from the functional profile. More broadly, this approach offers a general strategy for the systematic functional characterization of viruses on the genome scale.


Assuntos
Genoma Viral , Hepacivirus/genética , Proteínas Virais/genética , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Elementos de DNA Transponíveis/genética , DNA Viral/genética , Biblioteca Gênica , Hepacivirus/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese Insercional , Plasmídeos , Análise de Sequência de DNA , Transcrição Gênica , Transfecção , Proteínas Virais/metabolismo , Replicação Viral
9.
J Virol ; 88(19): 11369-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056896

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several human malignances. As saliva is likely the major vehicle for KSHV transmission, we studied in vitro KSHV infection of oral epithelial cells. Through infection of two types of oral epithelial cells, normal human oral keratinocytes (NHOKs) and papilloma-immortalized human oral keratinocyte (HOK16B) cells, we found that KSHV can undergo robust lytic replication in oral epithelial cells. By employing de novo lytic infection of HOK16B cells, we studied the functions of two previously uncharacterized genes, ORF18 and ORF30, during the KSHV lytic cycle. For this purpose, an ORF18-deficient virus and an ORF30-deficient virus were generated using a mutagenesis strategy based on bacterial artificial chromosome (BAC) technology. We found that neither ORF18 nor ORF30 is required for immediately early or early gene expression or viral DNA replication, but each is essential for late gene expression during both de novo lytic replication and reactivation. This critical role of ORF18 and ORF30 in late gene expression was also observed during KSHV reactivation. In addition, global analysis of viral transcripts by RNA sequencing indicated that ORF18 and ORF30 control the same set of viral genes. Therefore, we suggest that these two viral ORFs are involved in the same mechanism or pathway that coregulates the viral late genes as a group. IMPORTANCE: While KSHV can infect multiple cell types in vitro, only a few can support a full lytic replication cycle with progeny virions produced. Consequently, KSHV lytic replication is mostly studied through reactivation, which requires chemicals to induce the lytic cycle or overexpression of the viral transcriptional activator, RTA. In this study, we present a robust de novo lytic infection system based on oral epithelial cells. Using this system, we demonstrate the role of two viral ORFs, ORF18 and ORF30, in regulating viral gene expression during KSHV lytic replication. As the major route of KSHV transmission is thought to be via saliva, this new KSHV lytic replication system will have important utility in the field.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Queratinócitos/virologia , Fases de Leitura Aberta , Proteínas Virais/genética , Sequência de Bases , Linhagem Celular , Cromossomos Artificiais Bacterianos , Herpesvirus Humano 8/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Queratinócitos/patologia , Dados de Sequência Molecular , Mucosa Bucal/patologia , Mucosa Bucal/virologia , Deleção de Sequência , Transdução de Sinais , Proteínas Virais/metabolismo , Ativação Viral , Replicação Viral
10.
Bioinformatics ; 30(12): i329-37, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24932001

RESUMO

MOTIVATION: Next-generation sequencing technologies sequence viruses with ultra-deep coverage, thus promising to revolutionize our understanding of the underlying diversity of viral populations. While the sequencing coverage is high enough that even rare viral variants are sequenced, the presence of sequencing errors makes it difficult to distinguish between rare variants and sequencing errors. RESULTS: In this article, we present a method to overcome the limitations of sequencing technologies and assemble a diverse viral population that allows for the detection of previously undiscovered rare variants. The proposed method consists of a high-fidelity sequencing protocol and an accurate viral population assembly method, referred to as Viral Genome Assembler (VGA). The proposed protocol is able to eliminate sequencing errors by using individual barcodes attached to the sequencing fragments. Highly accurate data in combination with deep coverage allow VGA to assemble rare variants. VGA uses an expectation-maximization algorithm to estimate abundances of the assembled viral variants in the population. RESULTS on both synthetic and real datasets show that our method is able to accurately assemble an HIV viral population and detect rare variants previously undetectable due to sequencing errors. VGA outperforms state-of-the-art methods for genome-wide viral assembly. Furthermore, our method is the first viral assembly method that scales to millions of sequencing reads. AVAILABILITY: Our tool VGA is freely available at http://genetics.cs.ucla.edu/vga/


Assuntos
Algoritmos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , HIV/genética , Análise de Sequência de DNA , Software
11.
J Virol ; 88(14): 7987-97, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807708

RESUMO

Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-ß production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-ß. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. Importance: The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Gammaherpesvirinae/imunologia , Humanos , Vírus da Influenza A/imunologia , Ligação Proteica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA