RESUMO
BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.
Assuntos
Adipócitos , Resistencia a Medicamentos Antineoplásicos , Omento , Neoplasias Ovarianas , Piroptose , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Omento/metabolismo , Humanos , Adipócitos/metabolismo , Camundongos , Animais , Linhagem Celular Tumoral , Técnicas de CoculturaRESUMO
This is a single Institute, prospective cohort study. We collected twenty- two postmenopausal women with pelvic organ prolapse planning to undergo vaginal hysterectomy with transvaginal pelvic reconstructive surgery, with or without a concomitant anti-incontinence procedure. Vaginal swabs and urine samples were longitudinally collected at five time points: preoperative consult visit (T1), day of surgery prior to surgical scrub (T2), immediately postoperative (T3), day of hospital discharge (T4), and at the postoperative exam visit (T5). Women experiencing urinary tract infection symptoms provided a sample set prior to antibiotic administration (T6). Microbiome analysis on vaginal and urinary specimens at each time point. Region V3-V5 of the 16S ribosomal RNA gene was amplified and sequenced. Sample DNA was analyzed with visit T1, T2, T5 and T6. Six (27.3%) participants developed postoperative urinary tract infection whose vaginal sample at first clinical visit (T1) revealed beta-diversity analysis with significant differences in microbiome structure and composition. Women diagnosed with a postoperative urinary tract infection had a vaginal microbiome characterized by low abundance of Lactobacillus and high prevalence of Prevotella and Gardnerella species. In our cohort, preoperative vaginal swabs can predict who will develop a urinary tract infection following transvaginal surgery for pelvic organ prolapse.
RESUMO
Introduction: Lynch syndrome is caused by a germline mutation in mismatch repair (MMR) genes, leading to the loss of expression of MMR heterodimers, either MLH1/PMS2 or MSH2/MSH6, or isolated loss of PMS2 or MSH6. Concurrent loss of both heterodimers is uncommon, and patients carrying pathogenic variants affecting different MMR genes are rare, leading to the lack of cancer screening recommendation for these patients.Case presentation:Here, we reported a female with a family history of Lynch syndrome with MLH1 c.676C > T mutation. She developed endometrial cancer at 37 years old, with loss of MLH1/PMS2 expression. Immunohistochemical staining on tumor samples incidentally detected the additional loss of MSH6 expression. Whole exome sequencing on genomic DNA from peripheral blood revealed MSH6 c.2731C > T mutation, which was confirmed to be inherited from her mother, who had an early-onset ascending colon cancer without cancer family history. Conclusion: This is a rare case of the Lynch syndrome harboring germline mutations simultaneously in two different MMR genes inherited from two families with Lynch syndrome. The diagnosis of endometrial cancer at the age less than 40 years is uncommon for Lynch syndrome-related endometrial cancer. This suggests an earlier cancer screening for patients carrying two MMR mutations.
RESUMO
Tissue inhibitor of metalloproteinases-3 (TIMP3) is vital in regulating several biological processes. TIMP3 exerts antitumour effects via matrix metalloproteinase (MMP)-dependent and MMP-independent pathways. Due to promoter methylation and miRNA binding, TIMP3 expression has been observed to decrease in various cancers. Consequently, the migration and invasion of cancer cells increases. Conflicting results have reported that expression levels of TIMP3 in primary and advanced cancers are higher than those in healthy tissues. Therefore, the role of TIMP3 in cancer biology and progression needs to be elucidated. This review provides an overview of TIMP3, from its biological function to its effects on various cancers. Moreover, gynaecological cancers are discussed in detail. TIMP3 has been associated with cervical adenocarcinoma as well as cancer development in serous ovarian cancer and breast cancer metastasis. However, the relationship between TIMP3 and endometrial cancers remains unclear. TIMP3 may be a useful biomarker for gynaecological cancers and is a potential target for future cancer therapy.
Assuntos
Neoplasias da Mama , Neoplasias do Colo do Útero , Feminino , Humanos , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismoRESUMO
Lung cancer is the third most common cancer with Black/AA men showing higher risk and poorer outcomes than NHW men. Lung cancer disparities are multifactorial, driven by tobacco exposure, inequities in care access, upstream health determinants, and molecular determinants including biological and genetic factors. Elevated expressions of protein arginine methyltransferases (PRMTs) correlating with poorer prognosis have been observed in many cancers. Most importantly, our study shows that PRMT6 displays higher expression in lung cancer tissues of Black/AA men compared to NHW men. In this study, we investigated the underlying mechanism of PRMT6 and its cooperation with PRMT1 to form a heteromer as a driver of lung cancer. Disrupting PRMT1/PRMT6 heteromer by a competitive peptide reduced proliferation in non-small cell lung cancer cell lines and patient-derived organoids, therefore, giving rise to a more strategic approach in the treatment of Black/AA men with lung cancer and to eliminate cancer health disparities.
RESUMO
Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.
Assuntos
Anti-Infecciosos , Lactoferrina , Proteínas Recombinantes , Animais , Bovinos , Humanos , Anti-Infecciosos/farmacologia , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Lactoferrina/biossíntese , Lactoferrina/genética , Lactoferrina/farmacologia , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saccharomycetales , Staphylococcus aureus/efeitos dos fármacos , SuínosRESUMO
BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Assuntos
Neoplasias , Proteínas de Junções Íntimas , Animais , Humanos , Camundongos , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteômica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Junções Íntimas/metabolismoRESUMO
OBJECTIVES: To investigate the prevalence of polypharmacy and potential drug-drug interactions (DDIs), and the factors associated with DDIs among people living with human immunodeficiency virus (HIV; PLWH) in the modern era of antiretroviral therapy (ART). METHODS: This cross-sectional study included PLWH who had been on ART for ≥3 months at two designated HIV hospitals in Taiwan. All ART and non-ART prescriptions were collected from the NHI-MediCloud System and screened for DDIs using the University of Liverpool HIV drug interactions database. A case-control analysis was conducted to investigate the factors associated with DDIs. RESULTS: In total, 1007 PLWH were included in this study from June 2021 to August 2022. The median age was 40 (interquartile range 33-49) years, and 96.2% were taking integrase strand transfer inhibitor (INSTI)-based ART. The proportions of PLWH with at least one non-communicable disease and polypharmacy were 50.0% and 18.7%, respectively. Seven (0.7%) PLWH had red-flagged DDIs, and 159 (15.8%) had amber-flagged DDIs. In multi-variable models, the prevalence of DDIs was associated with older age [adjusted odds ratio (aOR) per 1-year increase 1.022), number of co-medications (aOR 1.097), use of boosted INSTI-based ART (vs unboosted INSTI, aOR 8.653), and concomitant medications in the alimentary tract and metabolism category (aOR 11.058) and anti-neoplastic and immunomodulating agents (aOR 14.733). CONCLUSIONS: In the INSTI era, the prevalence of potential DDIs is lower than noted previously, but remains substantial. Clinicians should monitor DDIs routinely, especially in older PLWH, those taking a higher number of co-medications, and those who are taking booster-containing ART or medications from specific categories.
Assuntos
Infecções por HIV , HIV , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Polimedicação , Estudos Transversais , Infecções por HIV/complicações , Interações Medicamentosas , IntegrasesRESUMO
BACKGROUND: MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. METHODS: The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. RESULTS: Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. CONCLUSION: The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Colágeno Tipo XI , Regulação para Baixo , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Metiltransferases , Ubiquitinas , DNA , MicroRNAs/genéticaRESUMO
Background MicroRNAs are a group of small non-coding RNAs that are involved in development and diseases such as cancer. Previously, we demonstrated that miR-335 is crucial for preventing collagen type XI alpha 1 (COL11A1)-mediated epithelial ovarian cancer (EOC) progression and chemoresistance. Here, we examined the role of miR-509-3p in EOC. Methods The patients with EOC who underwent primary cytoreductive surgery and postoperative platinum-based chemotherapy were recruited. Their clinic-pathologic characteristics were collected, and disease-related survivals were determined. The COL11A1 and miR-509-3p mRNA expression levels of 161 ovarian tumors were determined by real-time reverse transcription-polymerase chain reaction. Additionally, miR-509-3p hypermethylation was evaluated by sequencing in these tumors. The A2780CP70 and OVCAR-8 cells transfected with miR-509-3p mimic, while the A2780 and OVCAR-3 cells transfected with miR-509-3p inhibitor. The A2780CP70 cells transfected with a small interference RNA of COL11A1, and the A2780 cells transfected with a COL11A1 expression plasmid. Site-directed mutagenesis, luciferase, and chromatin immunoprecipitation assays were performed in this study. Results Low miR-509-3p levels were correlated with disease progression, a poor survival, and high COL11A1 expression levels. In vivo studies reinforced these findings and indicated that the occurrence of invasive EOC cell phenotypes and resistance to cisplatin are decreased by miR-509-3p. The miR-509-3p promoter region (p278) is important for miR-509-3p transcription regulation via methylation. The miR-509-3p hypermethylation frequency was significantly higher in EOC tumors with a low miR-509-3p expression than in those with a high miR-509-3p expression. The patients with miR-509-3p hypermethylation had a significantly shorter overall survival (OS) than those without miR-509-3p hypermethylation. Mechanistic studies further indicated that miR-509-3p transcription was downregulated by COL11A1 through a DNA methyltransferase 1 (DNMT1) phosphorylation and stability increase. Moreover, miR-509-3p targets small ubiquitin-like modifier (SUMO)-3 to regulate EOC cell growth, invasiveness, and chemosensitivity. Conclusion The miR-509-3p/DNMT1/SUMO-3 axis may be an ovarian cancer treatment target.
RESUMO
OBJECTIVE: Desmoid fibromatosis (DF) is a rare, locally aggressive soft tissue tumor. Computed tomography (CT) and magnetic resonance imaging (MRI) play a critical role in the diagnosis of DF and in developing treatment plans. Currently, observation is the primary therapeutic option for a biopsy-confirmed DF. Here, we present a case of a DF that was misdiagnosed as uterine fibroid before surgery. CASE REPORT: A 36-year-old woman presented with urinary frequency and a palpable lower abdominal mass, which was suspected as uterine fibroid based on sonography and CT. During surgery, an abdominal wall mass was found to be densely adherent to the bladder. Permanent pathology revealed that the tumor was desmoid-type fibromatosis. CONCLUSION: Desmoid tumors often occur in the abdomen, abdominal wall, extremities, head, and neck. Abdominal wall DF involving the rectus abdominis muscles is most commonly observed. Conversely, desmoid tumors involving the bladder are less described. The review of similar cases reported since 1985 showed that partial cystectomy was primarily performed for complete resection.
Assuntos
Parede Abdominal , Fibromatose Agressiva , Leiomioma , Feminino , Humanos , Adulto , Fibromatose Agressiva/diagnóstico , Fibromatose Agressiva/cirurgia , Fibromatose Agressiva/patologia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia , Ultrassonografia , Leiomioma/diagnóstico por imagem , Leiomioma/cirurgiaRESUMO
Lung cancer continues to be the leading cause of cancer death in the United States. Despite recent advances, the five-year survival rate for lung cancer compared to other cancers still remains fairly low. The discovery of molecular targets for lung cancer is key to the development of new approaches and therapies. Electrically silent voltage-gated potassium channel (KvS) subfamilies, which are unable to form functional homotetramers, are implicated in cell-cycle progression, cell proliferation and tumorigenesis. Here, we analyzed the expression of KvS subfamilies in human lung tumors and identified that potassium voltage-gated channel subfamily F member 1 (KCNF1) was up-regulated in non-small cell lung cancer (NSCLC). Silencing of KCNF1 in NSCLC cell lines reduced cell proliferation and tumor progression in mouse xenografts, re-established the integrity of the basement membrane, and enhanced cisplatin sensitivity. KCNF1 was predominately localized in the nucleoplasm and likely mediated its functions in an ion-independent manner. We identified integrin ß4 subunit (ITGB4) as a downstream target for KCNF1. Our findings suggest that KCNF1 promotes lung cancer by enhancing ITGB4 signaling and implicate KCNF1 as a novel therapeutic target for lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Integrina beta4/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de SinaisRESUMO
Metastatic tumours to the ovary comprise 10-25% of ovarian malignancies and may originate from various primary sites. Here, the case of a 49-year-old female patient who presented with periumbilical nodules and abdominal bloating is reported. She was found to have bilateral ovarian tumours with peritoneal carcinomatosis and ascites. Primary ovarian cancer was suspected while no contributory gastrointestinal lesion was detected by imaging studies and endoscopic examinations. Three cycles of neoadjuvant chemotherapy were administered, followed by interval debulking surgery. Appendiceal cancer was highly suspected based on analysis of a frozen section obtained during surgical debulking. Following the pathology investigation, the patient was finally diagnosed with primary appendiceal adenocarcinoma. She underwent chemotherapy comprising irinotecan and fluorouracil. Due to disease progression despite several chemotherapy regimens, the patient declined further treatment and was lost to follow-up 1 year after the debulking surgery. Metastatic tumours to the ovary may mimic primary ovarian cancers and often present with nonspecific manifestations. Therefore, meticulous exploration of the primary site is warranted if the diagnosis is clinically suspicious.
Assuntos
Adenocarcinoma , Neoplasias do Apêndice , Neoplasias Ovarianas , Neoplasias Peritoneais , Adenocarcinoma/diagnóstico , Adenocarcinoma/secundário , Adenocarcinoma/cirurgia , Neoplasias do Apêndice/diagnóstico , Neoplasias do Apêndice/patologia , Neoplasias do Apêndice/cirurgia , Procedimentos Cirúrgicos de Citorredução , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/cirurgia , Neoplasias Peritoneais/secundárioRESUMO
Sarcopenia is defined as the loss of skeletal muscle mass and muscle function. It is common in patients with malignancies and often associated with adverse clinical outcomes. The presence of sarcopenia in patients with cancer is determined by body composition, and recently, radiologic technology for the accurate estimation of body composition is under development. Artificial intelligence- (AI-) assisted image measurement facilitates the detection of sarcopenia in clinical practice. Sarcopenia is a prognostic factor for patients with cancer, and confirming its presence helps to recognize those patients at the greatest risk, which provides a guide for designing individualized cancer treatments. In this review, we examine the recent literature (2017-2021) on AI-assisted image assessment of body composition and sarcopenia, seeking to synthesize current information on the mechanism and the importance of sarcopenia, its diagnostic image markers, and the interventions for sarcopenia in the medical care of patients with cancer. We concluded that AI-assisted image analysis is a reliable automatic technique for segmentation of abdominal adipose tissue. It has the potential to improve diagnosis of sarcopenia and facilitates identification of oncology patients at the greatest risk, supporting individualized prevention planning and treatment evaluation. The capability of AI approaches in analyzing series of big data and extracting features beyond manual skills would no doubt progressively provide impactful information and greatly refine the standard for assessing sarcopenia risk in patients with cancer.
Assuntos
Neoplasias , Sarcopenia , Inteligência Artificial , Composição Corporal , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Neoplasias/complicações , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologiaRESUMO
BACKGROUND/PURPOSE: Limited data are available on the role of illicit non-injecting drug use in a prolonged HIV outbreak that predominantly affected men who have sex with men (MSM) in Taiwan since 2006. We aimed to assess associations between specific types of drug use and incident HIV infections in this outbreak. METHODS: We conducted a retrospective case-control study among MSM clients at voluntary counselling and testing (VCT) service at National Taiwan University Hospital (Taipei, Taiwan). We used BED IgG-capture enzyme immunoassay to identify incident HIV infection (cases), individually matched to HIV-negative MSM clients (controls) by HIV testing date. We used a structured questionnaire to obtain the information on illicit drug use and sexual risk behaviors. RESULTS: From a total of 15,305 MSM client visits during 2006-2015, 387 cases were matched to 1012 controls. Use of inhaled nitrites (adjusted odds ratio [aOR] 2.1), MDMA (aOR 2.9), amphetamines (aOR 1.6), and ketamine (aOR 1.5) were independently associated with incident HIV infection. Polydrug (≥2 drugs) use was associated with the highest risk (aOR 4.3; 95% CI 2.6-7.2). While the proportion of MSM VCT clients who reported use of any recreational drug remained stable during 2006-2015 (average: 9.7%, P: 0.38), there was a shift in specific types of drug use, from MDMA/ketamine to inhaled nitrites/amphetamine, after 2011 (all Ps < 0.05). CONCLUSION: Non-opioid recreational drugs use is associated with incident HIV infection in this prolonged HIV outbreak. There is an urgent need to formulate an effective public health response to mitigate the risk.
Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Estudos de Casos e Controles , Surtos de Doenças , Infecções por HIV/epidemiologia , Homossexualidade Masculina , Humanos , Masculino , Uso Recreativo de Drogas , Estudos Retrospectivos , Taiwan/epidemiologiaRESUMO
Between March and October, 2018, 1248 people living with HIV completed questionnaire interviews for cancer screening, of whom 46.9% (n = 585) completed free-of-charge cancer screening. Time constraint (50.1%) was the most common reason provided for refusal to participate in cancer screening. None of the participants were diagnosed with any of the four cancers.
Assuntos
Infecções por HIV , Neoplasias , Detecção Precoce de Câncer , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Hospitais Universitários , Humanos , Neoplasias/diagnóstico , Inquéritos e QuestionáriosRESUMO
High collagen type XI alpha 1 (COL11A1) levels are associated with tumor progression, chemoresistance, and poor patient survival in several cancer types. MicroRNAs (miRNAs) are dysregulated in multiple cancers, including epithelial ovarian carcinoma (EOC); however, the regulation of COL11A1 by miRNAs in EOC remains unclear. We examined the role of miRNAs in regulating COL11A1 expression. We identified miR-509 and miR-335 as the candidate miRNAs through an online database search. EOC cell treatment with miR-335 mimics abrogated COL11A1 expression and suppressed cell proliferation and invasion, besides increasing the sensitivity of EOC cells to cisplatin. Conversely, treatment with miR-335 inhibitors prompted cell growth/invasiveness and chemoresistance of EOC cells. miR-335 inhibited COL11A1 transcription, thus reducing the invasiveness and chemoresistance of EOC cells via the Ets-1/MMP3 and Akt/c/EBPß/PDK1 axes, respectively. Furthermore, it did not directly regulate PDK1 but increased PDK1 ubiquitination and degradation through COL11A1 inhibition. In vivo findings highlighted significantly decreased miR-335 mRNA expressions in EOC samples. Furthermore, patients with low miR335 levels were susceptible to advanced-stage cancer, poor response to chemotherapy, and early relapse. This study highlighted the importance of miR-335 in downregulating COL11A1-mediated ovarian tumor progression, chemoresistance, and poor survival and suggested its potential application as a therapeutic target.
RESUMO
The tumor microenvironment is a well-recognized framework in which immune cells present in the tumor microenvironment promote or inhibit cancer formation and development. A crown-like structure (CLS) has been reported as a dying or dead adipocyte surrounded by a 'crown' of macrophages within adipose tissue, which is a histologic hallmark of the inflammatory process in this tissue. CLSs have also been found to be related to formation, progression and prognosis of some types of cancer. However, the presence of CLSs in the omentum of advanced-stage high-grade serous ovarian carcinoma (HGSOC) has not been thoroughly investigated. By using CD68, a pan-macrophage marker, and CD163, an M2-like polarization macrophage marker, immunohistochemistry (IHC) was performed to identify tumor-associated macrophages (TAMs) and CLSs. This retrospective study analyzed 116 patients with advanced-stage HGSOC who received complete treatment and had available clinical data from July 2008 through December 2016 at National Cheng Kung University Hospital (NCKUH) (Tainan, Taiwan). Based on multivariate Cox regression analysis, patients with omental CD68+ CLSs had poor OS (median survival: 24 vs. 38 months, p = 0.001, hazard ratio (HR): 2.26, 95% confidence interval (CI): 1.41-3.61); patients with omental CD163+ CLSs also had poor OS (median survival: 22 vs. 36 months, HR: 2.14, 95%CI: 1.33-3.44, p = 0.002). Additionally, patients with omental CD68+ or CD163+ CLSs showed poor PFS (median survival: 11 vs. 15 months, HR: 2.28, 95%CI: 1.43-3.64, p = 0.001; median survival: 11 vs. 15 months, HR: 2.17, 95%CI: 1.35-3.47, respectively, p = 0.001). Conversely, the density of CD68+ or CD163+ TAMs in ovarian tumors was not associated with patient prognosis in advanced-stage HGSOC in our cohort. In conclusion, we, for the first time, demonstrate that the presence of omental CLSs is associated with poor prognosis in advanced-stage HGSOC.
Assuntos
Omento , Neoplasias Ovarianas , Feminino , Humanos , Macrófagos , Prognóstico , Estudos Retrospectivos , Microambiente TumoralRESUMO
An optimal therapeutic regimen for endometrial cancer with extra-uterine metastasis is unavailable. This study aims to improve our understanding of the genomic landscape of advanced endometrial cancer and identify potential therapeutic targets. The clinical and genomic profiles of 81 patients with stage III or IV endometrial cancer were integrated. To identify genomic aberrations associated with clinical outcomes, Cox proportional hazard regression was used. The impacts of the genomic aberrations were validated in vitro and in vivo. The mutation status of MET, U2AF1, BCL9, PPP2R1A, IDH2, CBL, BTK, and CHEK2 were positively correlated with poor clinical outcomes. MET mutations occurred in 30% of the patients who presented with poor overall survival (hazard ratio, 2.606; 95% confidence interval, 1.167~5.819; adjusted p-value, 0.067). Concurrent MET and KRAS mutations presented with the worst outcomes. MET mutations in hepatocyte growth factor (HGF)-binding (58.1%) or kinase (16.2%) domains resulted in differential HGF-induced c-MET phosphorylation. Different types of MET mutations differentially affected tumor growth and displayed different sensitivities to cisplatin and tyrosine kinase inhibitors. MET N375S mutation is a germline variant that causes chemoresistance to cisplatin, with a high incidence in Eastern Asia. This study highlights the ethnic differences in the biology of the disease, which can influence treatment recommendations and the genome-guided clinical trials of advanced endometrial cancer.
RESUMO
Ovarian cancer has a unique tumor microenvironment (TME) that enables cancer-associated fibroblasts (CAFs) to interact with cellular and matrix constituents and influence tumor development and migration into the peritoneal cavity. Collagen type XI alpha 1 (COL11A1) is overexpressed in CAFs; therefore this study examines its role during CAF activation in epithelial ovarian cancer (EOC). Coculturing human ovarian fibroblasts (HOFs) with high COL11A1-expressing EOC cells or exposure to the conditioned medium of these cells prompted the expression of COL11A1 and CAF phenotypes. Conversely, coculturing HOFs with low COL11A1-expressing EOC cells or COL11A1-knockdown abrogated COL11A1 overexpression and secretion, in addition to CAF activation. Increased p-SP1 expression attributed to COL11A1-mediated extracellular signal-regulated kinase activation (ERK) induced p65 translocation into the nucleus and augmented its binding to the insulin-like growth factor binding protein 2 (IGFBP2) promoter, ultimately inducing TGF-ß3 activation. The CAF-cancer cell crosstalk triggered interleukin-6 release, which in turn promoted EOC cell proliferation and invasiveness. These in vitro results were confirmed by in vivo findings in a mouse model, showing that COL11A1 overexpression in EOC cells promoted tumor formation and CAF activation, which was inhibited by TGF-ß3 antibody. Human tumors with high TGF-ß3 levels showed elevated expression of COL11A1 and IGFBP2, which was associated with poor survival. Our findings suggest the possibility that anti-TGF-ß3 treatment strategy may be effective in targeting CAFs in COL11A1-positive ovarian tumors.