Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105155, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744109

RESUMO

BACKGROUND: Despite numerous studies having evaluated the associations between human papillomavirus (HPV) infection and risk of specific cancers other than anogenital tract and oropharyngeal, the findings are inconsistent and the quality of evidence has not been systematically quantified. We aimed to summarise the existing evidence as well as to evaluate the strength and credibility of these associations. METHODS: We conducted an umbrella review of systematic reviews and meta-analyses of observational studies. PubMed, EMBASE, and Web of Science were searched from inception to March 2024. Studies with systematic reviews and meta-analyses that examined associations between HPV or HPV-associated genotypes infection and specific cancers were eligible for this review. The quality of the methodology was evaluated using A Measurement Tool to Assess systematic Reviews (AMSTAR). The credibility of the evidence was assessed using GRADE. The protocol was preregistered with PROSPERO (CRD42023439070). FINDINGS: The umbrella review identified 31 eligible studies reporting 87 associations with meta-analytic estimates, including 1191 individual studies with 336,195 participants. Of those, 29 (93.5%) studies were rated as over moderate quality by AMSTAR. Only one association indicating HPV-18 infection associated with an increased risk of breast cancer (odds ratio [OR] = 3.48, 95% confidence interval [CI] = 2.24-5.41) was graded as convincing evidence. There were five unique outcomes identified as highly suggestive evidence, including HPV infection increased the risk of oral squamous cell carcinoma (OR = 7.03, 95% CI = 3.87-12.76), oesophageal cancer (OR = 3.32, 95% CI = 2.54-4.34), oesophageal squamous cell carcinoma (OR = 2.69, 95% CI = 2.05-3.54), lung cancer (OR = 3.60, 95% CI = 2.59-5.01), and breast cancer (OR = 6.26, 95% CI = 4.35-9.00). According to GRADE, one association was classified as high, indicating that compared with the controls in normal tissues, HPV infection was associated with an increased risk of breast cancer. INTERPRETATION: The umbrella review synthesised up-to-date observational evidence on HPV infection with the risk of breast cancer, oral squamous cell carcinoma, oesophageal cancer, oesophageal squamous cell carcinoma, and lung cancer. Further larger prospective cohort studies are needed to verify the associations, providing public health recommendations for prevention of disease. FUNDING: National Key Research and Development Program of China, Natural Science Foundation of China, Outstanding Scientific Fund of Shengjing Hospital of China Medical University, and 345 Talent Project of Shengjing Hospital of China Medical University.

2.
Ecotoxicol Environ Saf ; 278: 116400, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718725

RESUMO

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.

3.
World J Gastroenterol ; 30(14): 2018-2037, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681125

RESUMO

BACKGROUND: Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Recent reports suggest that Fusobacterium nucleatum (F. nucleatum) contributes to the initiation, progression, and prognosis of CRC. Butyrate, a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber, is known to inhibit various cancers. This study is designed to explore whether F. nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid. AIM: To investigate the mechanism by which F. nucleatum affects CRC occurrence and development. METHODS: Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F. nucleatum. Additionally, DLD-1 and HCT116 cell lines were exposed to sodium butyrate (NaB) and F. nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function. RESULTS: Our research indicates that the prevalence of F. nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts, while the prevalence of butyrate-producing bacteria is notably lower. In mice colonized with F. nucleatum, the population of butyrate-producing bacteria decreased, resulting in altered levels of butyric acid, a key intestinal metabolite of butyrate. Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells. Consequently, this leads to modulated production of adenosine triphosphate and reactive oxygen species, thereby inhibiting cancer cell proliferation. Additionally, NaB triggers the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, blocks the cell cycle in HCT116 and DLD-1 cells, and curtails the proliferation of CRC cells. The combined presence of F. nucleatum and NaB attenuated the effects of the latter. By employing small interfering RNA to suppress AMPK, it was demonstrated that AMPK is essential for NaB's inhibition of CRC cell proliferation. CONCLUSION: F. nucleatum can promote cancer progression through its inhibitory effect on butyric acid, via the AMPK signaling pathway.


Assuntos
Ácido Butírico , Proliferação de Células , Neoplasias Colorretais , Fezes , Fusobacterium nucleatum , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Humanos , Camundongos , Fezes/microbiologia , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Infecções por Fusobacterium/microbiologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Feminino , Progressão da Doença , Disbiose , Potencial da Membrana Mitocondrial/efeitos dos fármacos
4.
Front Psychol ; 15: 1343186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659684

RESUMO

Background and aims: In China, a significant number of undergraduates are experiencing poor sleep quality. This study was designed to investigate the prevalence of poor sleep quality and identify associated factors among undergraduates in Jiangsu Province, China. Methods: A total of 8,457 participants were collected in 2022 using whole-group convenience sampling. The factors studied included basic demographics, family and social support, personal lifestyles, physical and mental health, mobile phone addiction index (MPAI), and the Connor-Davidson resilience scale (CD-RISC). The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality. Four models, including weighted multiple linear regression, binary logistic regression, weighted linear mixed model, and logistic regression with random effects, were applied to identify associated factors for sleep quality. Results: Of the 8,457 participants analyzed, 26.64% (2,253) were classified into the poor sleep quality group with a PSQI score >7. No significant relationship was found between sleep quality and gender, native place, economic level of family, physical exercise, dormitory light, dormitory hygiene, and amativeness matter. Risk factors for sleep quality identified by the four models included lower CD-RISC, higher MPAI, fourth grade or above, smoking, drinking, greater academic pressure, greater employment pressure, roommate sleeping late, noisy dormitory, poorer physical health status, poorer mental health status, and psychological counseling. Conclusions: These findings provide valuable insights for university administrators, enabling them to better understand the risk factors associated with poor sleep quality in undergraduates. By identifying these factors, administrators can provide targeted intervention measures and counseling programs to improve students' sleep quality.

5.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38636970

RESUMO

BACKGROUND: Up to 50% of those attending for low-dose computed tomography screening for lung cancer continue to smoke and co-delivery of smoking cessation services alongside screening may maximise clinical benefit. Here we present data from an opt-out co-located smoking cessation service delivered alongside the Yorkshire Lung Screening Trial (YLST). METHODS: Eligible YLST participants were offered an immediate consultation with a smoking cessation practitioner (SCP) at their screening visit with ongoing smoking cessation support over subsequent weeks. RESULTS: Of 2150 eligible participants, 1905 (89%) accepted the offer of an SCP consultation during their initial visit, with 1609 (75%) receiving ongoing smoking cessation support over subsequent weeks. Uptake of ongoing support was not associated with age, ethnicity, deprivation or educational level in multivariable analyses, although men were less likely to engage (adjusted OR (ORadj) 0.71, 95% CI 0.56-0.89). Uptake was higher in those with higher nicotine dependency, motivation to stop smoking and self-efficacy for quitting. Overall, 323 participants self-reported quitting at 4 weeks (15.0% of the eligible population); 266 were validated by exhaled carbon monoxide (12.4%). Multivariable analyses of eligible smokers suggested 4-week quitting was more likely in men (ORadj 1.43, 95% CI 1.11-1.84), those with higher motivation to quit and previous quit attempts, while those with a stronger smoking habit in terms of cigarettes per day were less likely to quit. CONCLUSIONS: There was high uptake for co-located opt-out smoking cessation support across a wide range of participant demographics. Protected funding for integrated smoking cessation services should be considered to maximise programme equity and benefit.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Masculino , Humanos , Abandono do Hábito de Fumar/métodos , Serviços de Saúde Comunitária , Pulmão , Tomografia
6.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567994

RESUMO

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Animais , Camundongos , Neoplasias/terapia , Adjuvantes Imunológicos , Imunoterapia/métodos , Nanopartículas/química
7.
Int J Biol Sci ; 20(6): 2264-2294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617537

RESUMO

The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.


Assuntos
Microbiota , Neoplasias , Probióticos , Humanos , Imunoterapia , Probióticos/uso terapêutico , Neoplasias/terapia
8.
Cell Cycle ; : 1-17, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619971

RESUMO

Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related fatalities globally. In this study, we observed a significant increase in the expression level of the YEATS2 gene in HCC patients, and it is negatively correlated with the patients' survival rate. While we have previously identified the association between YEATS2 and the survival of pancreatic cancer cells, the regulatory mechanisms and significance in HCC are still to be fully elucidated. Our study shows that knockdown (KD) of YEATS2 expression leads to DNA damage, which in turn results in an upregulation of γ-H2A.X expression and activation of the canonical senescence-related pathway p53/p21Cip1. Moreover, our transcriptomic analysis reveals that YEATS2 KD cells can enhance the expression of p21Cip1 via the c-Myc/miR-93-5p pathway, consequently fostering the senescence of HCC cells. The initiation of cellular senescence through dual-channel activation suggests that YEATS2 plays a pivotal regulatory role in the process of cell proliferation. Ultimately, our in vivo research utilizing a nude mouse tumor model revealed a notable decrease in both tumor volume and weight after the suppression of YEATS2 expression. This phenomenon is likely attributable to the attenuation of proliferative cell activity, coupled with a concurrent augmentation in the population of natural killer (NK) cells. In summary, our research results have supplemented the understanding of the regulatory mechanisms of HCC cell proliferation and indicated that targeting YEATS2 may potentially inhibit liver tumor growth.

9.
PeerJ ; 12: e17183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560476

RESUMO

Background: PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods: Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results: Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.


Assuntos
Fagopyrum , Filogenia , Fagopyrum/genética , Proteínas de Plantas/genética , Genoma de Planta , Etanolaminas/metabolismo
10.
Oncogene ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565942

RESUMO

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.

11.
Appl Opt ; 63(9): 2180-2186, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568570

RESUMO

In this paper, a methane detection sensor based on direct absorption spectroscopy and the self-heating effect of lasers is proposed, which abandons the traditional method of relying on a thermoelectric cooler (TEC) to ensure stable gas concentration detection. The sensor can achieve stable concentration measurement in the temperature range of -10∘ to 40°C without the need for a TEC, which greatly simplifies the structure of the sensor and reduces the cost. The results of gas concentration calibration experiments show that the sensor has a good linear correlation (R 2=0.9993). Long-term continuous detection experiments show that the sensor maintains a relative detection error between -2.667% and 4.3% over the full test temperature range. In addition, signal-to-noise ratio analysis experiments further determine that the minimum detection limit of the sensor for methane gas is 27.33p p m⋅m (1σ). Given its advantages of simple structure, low cost, high accuracy, and stability, this methane detection sensor is well suited for natural gas leakage monitoring in home environments and can also be widely used in industrial safety detection and environmental monitoring applications. This technology provides a cost-effective solution for domestic and industrial methane detection.

12.
World J Diabetes ; 15(3): 488-501, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591087

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a major complication of diabetes mellitus. Renal tubular epithelial cell (TEC) damage, which is strongly associated with the inflammatory response and mesenchymal trans-differentiation, plays a significant role in DKD; However, the precise molecular mechanism is unknown. The recently identified microRNA-630 (miR-630) has been hypothesized to be closely associated with cell migration, apoptosis, and autophagy. However, the association between miR-630 and DKD and the underlying mechanism remain unknown. AIM: To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats. METHODS: Streptozotocin was administered to six-week-old male rats to create a hyperglycemic diabetic model. In the second week of modeling, the rats were divided into control, DKD, negative control of lentivirus, and miR-630 overexpression groups. After 8 wk, urine and blood samples were collected for the kidney injury assays, and renal tissues were removed for further molecular assays. The target gene for miR-630 was predicted using bioinformatics, and the association between miR-630 and toll-like receptor 4 (TLR4) was confirmed using in vitro investigations and double luciferase reporter gene assays. Overexpression of miR-630 in DKD rats led to changes in body weight, renal weight index, basic blood parameters and histopathological changes. RESULTS: The expression level of miR-630 was reduced in the kidney tissue of rats with DKD (P < 0.05). The miR-630 and TLR4 expressions in rat renal TECs (NRK-52E) were measured using quantitative reverse transcription polymerase chain reaction. The mRNA expression level of miR-630 was significantly lower in the high-glucose (HG) and HG + mimic negative control (NC) groups than in the normal glucose (NG) group (P < 0.05). In contrast, the mRNA expression level of TLR4 was significantly higher in these groups (P < 0.05). However, miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Furthermore, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were significantly higher in the HG and HG + mimic NC groups than in NG group (P < 0.05). However, the levels of these cytokines were significantly lower in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Notably, changes in protein expression were observed. The HG and HG + mimic NC groups showed a significant decrease in E-cadherin protein expression, whereas TLR4, α-smooth muscle actin (SMA), and collagen IV protein expression increased (P < 0.05). Conversely, the HG + miR-630 mimic group exhibited a significant increase in E-cadherin protein expression and a notable decrease in TLR4, α-SMA, and collagen IV protein expression than in the HG + mimic NC group (P < 0.05). The miR-630 targets TLR4 gene expression. In vivo experiments demonstrated that DKD rats treated with miR-630 agomir exhibited significantly higher miR-630 mRNA expression than DKD rats injected with agomir NC. Additionally, rats treated with miR-630 agomir showed significant reductions in urinary albumin, blood glucose, TLR4, and proinflammatory markers (TNF-α, IL-1ß, and IL-6) expression levels (P < 0.05). Moreover, these rats exhibited fewer kidney lesions and reduced infiltration of inflammatory cells. CONCLUSION: MiR-630 may inhibit the inflammatory reaction of DKD by targeting TLR4, and has a protective effect on DKD.

13.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604759

RESUMO

The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.

14.
Cancer Lett ; 590: 216842, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38582395

RESUMO

Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Exossomos , MicroRNAs , Superóxido Dismutase-1 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Cisplatino/farmacologia , Exossomos/metabolismo , Exossomos/genética , Fosforilação , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , NF-kappa B/metabolismo , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia
15.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447147

RESUMO

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linfócitos T CD8-Positivos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Camundongos , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Sistema de Sinalização das MAP Quinases/imunologia , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Camundongos Endogâmicos C57BL , Autofagia/imunologia
16.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473703

RESUMO

Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central nervous system (CNS), consisting of heterogeneous clinical courses varying from relapsing-remitting MS (RRMS), in which disability is linked to bouts of inflammation, to progressive disease such as primary progressive MS (PPMS) and secondary progressive MS (SPMS), in which neurological disability is thought to be linked to neurodegeneration. As a result, successful therapeutics for progressive MS likely need to have both anti-inflammatory and direct neuroprotective properties. The modulation of sphingosine-1-phosphate (S1P) receptors has been implicated in neuroprotection in preclinical animal models. Siponimod/BAF312, the first oral treatment approved for SPMS, may have direct neuroprotective benefits mediated by its activity as a selective (S1P receptor 1) S1P1 and (S1P receptor 5) S1P5 modulator. We showed that S1P1 was mainly present in cortical neurons in lesioned areas of the MS brain. To gain a better understanding of the neuroprotective effects of siponimod in MS, we used both rat neurons and human-induced pluripotent stem cell (iPSC)-derived neurons treated with the neuroinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Cell survival/apoptotic assays using flow cytometry and IncuCyte live cell analyses showed that siponimod decreased TNF-α induced neuronal cell apoptosis in both rat and human iPSCs. Importantly, a transcriptomic analysis revealed that mitochondrial oxidative phosphorylation, NFκB and cytokine signaling pathways contributed to siponimod's neuroprotective effects. Our data suggest that the neuroprotection of siponimod/BAF312 likely involves the relief of oxidative stress in neuronal cells. Further studies are needed to explore the molecular mechanisms of such interactions to determine the relationship between mitochondrial dysfunction and neuroinflammation/neurodegeneration.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Fármacos Neuroprotetores , Humanos , Animais , Ratos , Receptores de Esfingosina-1-Fosfato , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Morte Celular
17.
Comput Struct Biotechnol J ; 24: 205-212, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510535

RESUMO

The diagnosis of cancer is typically based on histopathological sections or biopsies on glass slides. Artificial intelligence (AI) approaches have greatly enhanced our ability to extract quantitative information from digital histopathology images as a rapid growth in oncology data. Gynecological cancers are major diseases affecting women's health worldwide. They are characterized by high mortality and poor prognosis, underscoring the critical importance of early detection, treatment, and identification of prognostic factors. This review highlights the various clinical applications of AI in gynecological cancers using digitized histopathology slides. Particularly, deep learning models have shown promise in accurately diagnosing, classifying histopathological subtypes, and predicting treatment response and prognosis. Furthermore, the integration with transcriptomics, proteomics, and other multi-omics techniques can provide valuable insights into the molecular features of diseases. Despite the considerable potential of AI, substantial challenges remain. Further improvements in data acquisition and model optimization are required, and the exploration of broader clinical applications, such as the biomarker discovery, need to be explored.

18.
Thorac Cancer ; 15(12): 1007-1016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494915

RESUMO

BACKGROUND: PIEZO1 works differently in different cancers and at different stages of development. The objective of the current study was to explore the function and underlying mechanism of PIEZO1 in lung adenocarcinoma (LUAD) cells. METHODS: Different LUAD cell lines were treated with PIEZO1 inhibitor (GsMTx4) and agonist (Yoda1), and the expression of PIEZO1 in LUAD cells was detected using real-time quantitative PCR (RT-qPCR) and western blotting. The effects of PIEZO1 on invasion, migration and epithelial-mesenchymal transition (EMT) markers protein expression of LUAD cells were detected using the MTT assay, flow cytometry, transwell assay, wound-healing assay, and western blotting. Reactive oxygen species (ROS) agonists (BAY 87-2243) and inhibitors (NAC) and Wnt/ß-catenin pathway inhibitors (iCRT3) were selected to treat A549 cells to investigate the mechanism of PIEZO1 on ROS production and Wnt/ß-catenin expression in A549 cells. RESULTS: In A549, NCI-H1395, and NCI-H1975 cells, GsMTx4 promoted cell proliferation, invasion, migration, upregulated EMT-related marker protein expression, and inhibited cell apoptosis, while Yoda1 exerted effects opposite to those of GsMTx4. In A549 cells, GsMTx4 can reduce ROS production, it also inhibited ROS production, apoptosis, and downregulated proapoptotic markers induced by BAY 87-2243. Importantly, BAY 87-2243 blocked the effect of GSMTX4-induced Wnt/ß-catenin overexpression. Similarly, Yoda1 can reduce the effect of NAC. In addition, iCRT3 can block the upregulation of EMT-related marker proteins by GsMTx4, and increase apoptosis and decrease cell invasion and migration. CONCLUSION: In summary, PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/ß-catenin axis, providing a new perspective on the role of mechanosensitive channel proteins in cancer.


Assuntos
Proliferação de Células , Canais Iônicos , Espécies Reativas de Oxigênio , Via de Sinalização Wnt , Humanos , Espécies Reativas de Oxigênio/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Movimento Celular , Apoptose , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , beta Catenina/metabolismo
19.
Carbohydr Polym ; 333: 121991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494240

RESUMO

Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.


Assuntos
Queimaduras , Quitosana , Polifenóis , Humanos , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Materiais Biocompatíveis , Hidrogéis/farmacologia , Neovascularização Patológica , Cicatrização , Antibacterianos
20.
Artigo em Inglês | MEDLINE | ID: mdl-38472594

RESUMO

PURPOSE: Recent evidence suggests that age-accumulated methylmalonic acid (MMA) promotes breast cancer progression in mice. This study aims to investigate the association between baseline serum MMA concentrations in patients with breast cancer and the development of subsequent distant metastases. METHODS: We included 32 patients with early Luminal B-like breast cancer (LumB, median age 62.4y) and 52 patients with early triple-negative breast cancer (TNBC, median age 50.5y) who developed distant metastases within 5 years. They were matched to an equal number of early breast cancer patients (median age 62.2y for LumB and 50.5y for TNBC) who did not develop distant metastases with at least 5 years of follow-up. RESULTS: Baseline serum MMA levels at breast cancer diagnosis showed a positive correlation with age (P < 0.001) and a negative correlation with renal function and vitamin B12 (all P < 0.02), but no statistical association was found with BMI or tumor stage (P > 0.6). Between matched pairs, no significant difference was observed in MMA levels, after adjusting for kidney function and age (P = 0.19). Additionally, in a mouse model, a significant decline in MMA levels was observed in the tumor-bearing group compared to the group without tumors before and after tumor establishment or at identical times for the control group (P = 0.03). CONCLUSION: Baseline serum MMA levels in patients with breast cancer are not correlated with secondary distant metastasis. Evidence in the mouse model suggests that the presence of a tumor perturbates MMA levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA