Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(25): e2302136, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400369

RESUMO

Tissue regeneration is regulated by morphological clues of implants in bone defect repair. Engineered morphology can boost regenerative biocascades that conquer challenges such as material bioinertness and pathological microenvironments. Herein, a correlation between the liver extracellular skeleton morphology and the regenerative signaling, namely hepatocyte growth factor receptor (MET), is found to explain the mystery of rapid liver regeneration. Inspired by this unique structure, a biomimetic morphology is prepared on polyetherketoneketone (PEKK) via femtosecond laser etching and sulfonation. The morphology reproduces MET signaling in macrophages, causing positive immunoregulation and optimized osteogenesis. Moreover, the morphological clue activates an anti-inflammatory reserve (arginase-2) to translocate retrogradely from mitochondria to the cytoplasm due to the difference in spatial binding of heat shock protein 70. This translocation enhances oxidative respiration and complex II activity, reprogramming the metabolism of energy and arginine. The importance of MET signaling and arginase-2 in the anti-inflammatory repair of biomimetic scaffolds is also verified via chemical inhibition and gene knockout. Altogether, this study not only provides a novel biomimetic scaffold for osteoporotic bone defect repair that can simulate regenerative signals, but also reveals the significance and feasibility of strategies to mobilize anti-inflammatory reserves in bone regeneration.


Assuntos
Regeneração Óssea , Inflamação , Fígado , Macrófagos , Osseointegração , Osteoporose , Alicerces Teciduais , Animais , Feminino , Camundongos , Ratos , Respiração Celular , Metabolismo Energético , Inflamação/prevenção & controle , Fígado/citologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Alicerces Teciduais/química
2.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046588

RESUMO

Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.

3.
Hum Cell ; 35(1): 150-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34822133

RESUMO

MCM3AP-AS1 regulates the cartilage repair in osteoarthritis, but how it regulates osteogenic differentiation of dental pulp stem cells (DPSCs) remains to be determined. DPSCs were isolated and induced for osteogenic differentiation. MCM3AP-AS1 expression was increased along with the osteogenic differentiation of DPSCs, whose expression was positive correlated with those of OCN, alkaline phosphatase (ALP) and RUNX2. On contrary, miR-143-3p expression was decreased along with the osteogenic differentiation and was negatively correlated with those of OCN, ALP and RUNX2. Dual-luciferase reporter gene assay showed that miR-143-3p can be negatively regulated by MCM3AP-AS1 and can regulate IGFBP5. MCM3AP-AS1 overexpression increased the expression levels of osteogenesis-specific genes, ALP activity and mineralized nodules during DPSC osteogenic differentiation, while IGFBP5 knockdown or miR-143-3p overexpression counteracted the effect of MCM3AP-AS1 overexpression in DPSCs. Therefore, this study demonstrated the role of MCM3AP-AS1/miR-143-3p/IGFBP5 axis in regulating DPSC osteogenic differentiation.


Assuntos
Acetiltransferases/fisiologia , Diferenciação Celular/genética , Polpa Dentária/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Expressão Gênica/fisiologia , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MicroRNAs/metabolismo , Osteogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , Células-Tronco/fisiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fosfatase Alcalina/metabolismo , Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteogênese/fisiologia , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo
4.
Int J Oral Sci ; 12(1): 25, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958751

RESUMO

Bone tissue engineering has emerged as a promising alternative therapy for patients who suffer bone fractures or defects caused by trauma, congenital diseases or tumours. However, the reconstruction of bone defects combined with osteoporosis remains a great challenge for clinicians and researchers. Based on our previous study, Ca-Si-based bioceramics (MSCs) showed enhanced bone formation capabilities under normal conditions, and strontium was demonstrated to be therapeutic in promoting bone quality in osteoporosis patients. Therefore, in the present study, we attempted to enlarge the application range of MSCs with Sr incorporation in an osteoporotic bone regeneration model to evaluate whether Sr could assist in regeneration outcomes. In vitro readout suggested that Sr-incorporated MSC scaffolds could enhance the expression level of osteogenic and angiogenic markers of osteoporotic bone mesenchymal stem cells (OVX BMSCs). Animal experiments showed a larger new bone area; in particular, there was a tendency for blood vessel formation to be enhanced in the Sr-MSC scaffold group, showing its positive osteogenic capacity in bone regeneration. This study systematically illustrated the effective delivery of a low-cost therapeutic Sr agent in an osteoporotic model and provided new insight into the treatment of bone defects in osteoporosis patients.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Animais , Humanos , Osteogênese , Estrôncio , Engenharia Tecidual , Alicerces Teciduais
5.
Exp Physiol ; 105(5): 876-885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32052500

RESUMO

NEW FINDINGS: What is the central question of this study? What is the role of miR-143-3p during human dental pulp stem cell (hDPSC) differentiation. What is the main finding and its importance? miR-143-3p negatively regulates receptor activator of nuclear factor-κB (RANK). RANK ligand (RANKL) binds to RANK and stimulates the development of osteoclasts. Osteoprotegerin (OPG) inhibits the interaction between RANK and RANKL. The OPG-RANKL signalling pathway regulates odontogenic differentiation of hDPSCs. ABSTRACT: Human dental pulp stem cells (hDPSCs) are capable of differentiating into odontoblast-like cells, which secrete reparative dentin after injury, in which the role of microRNA-143-3p (miR-143-3p) has been identified. Therefore, we investigated the mechanism by which miR-143-3p influences odontoblastic differentiation of hDPSCs. The relationship between miR-143-3p and receptor activator of nuclear factor-κB (RANK) was initially identified by bioinformatics prediction and further verified by dual luciferase reporter gene assay. Gain- and loss-of-function analysis with miR-143-3p mimic and miR-143-3p inhibitor was subsequently conducted. Dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN) mRNA levels were then evaluated by RT-qPCR. Osteoprotegerin (OPG), RANK ligand (RANKL), nuclear factor-κB (NF-κB) p65 protein levels and the extent of NF-κB p65 phosphorylation were examined by western blot analysis. Alizarin red staining was performed to assess the mineralization of hDPSCs. Cell apoptosis and cell cycle distribution were determined using flow cytometry. During odontoblastic differentiation of hDPSC, miR-143-3p had high expression, but RANK expression was low. miR-143-3p was found to target RANK, and its inhibition enhanced mineralization and hDPSC apoptosis, while blocking cell cycle entry. At the same time, miR-143-3p inhibition elevated the extent of NF-κB p65 phosphorylation, as well as the expression of RANK, RANKL, DSPP, BSP, ALP, OCN and OPN, while decreasing the OPG level. Silencing RANK had opposite effects on these markers. miR-143-3p regulates odontoblastic differentiation of hDPSCs via the OPG-RANKL pathway that targets RANK. The elucidation of the mechanisms of odontogenic differentiation of hDPSCs may contribute to the development of effective dental pulp repair therapies for the clinical setting.


Assuntos
Polpa Dentária/citologia , MicroRNAs/fisiologia , Osteoprotegerina/fisiologia , Ligante RANK/fisiologia , Células-Tronco/citologia , Adolescente , Diferenciação Celular , Células Cultivadas , Humanos , Odontoblastos/citologia , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais , Fator de Transcrição RelA , Adulto Jovem
6.
Sci Rep ; 7(1): 5077, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698566

RESUMO

Typically, bone regenerative medicine is applied to repair bone defects in patients with osteoporosis. Meanwhile, there is an urgent need to develop safe and cheap drugs that induce bone formation. Icariin, which is reported to promote the osteogenesis of stem cells in vitro, is the main active component of Herba Epimedii. However, whether icariin could repair bone defects caused by osteoporosis remains unknown. In this study, an osteoporosis model in rats was established by an ovariectomy first, and then, the osteogenic and angiogenic differentiation of bone mesenchymal stem cells (BMSCs) treated with icariin was evaluated. Furthermore, calcium phosphate cement (CPC) scaffolds loaded with icariin were constructed and then implanted into nude mice to determine the optimal construction. To evaluate its osteogenic and angiogenic ability in vivo, this construction was applied to calvarial defect of the ovariectomized (OVX) rats accompanied with an icariin gavage. This demonstrated that icariin could up-regulate the expression of osteogenic and angiogenic genes in BMSCs. Meanwhile, osteoclast formation was inhibited. Moreover, CPC could act as a suitable icariin delivery system for repairing bone defects by enhancing osteogenesis and angiogenesis, while the systemic administration of icariin has an antiosteoporotic effect that promotes bone defect repair.


Assuntos
Flavonoides/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ovariectomia , Crânio/patologia , Animais , Fenômenos Biomecânicos , Cimentos Ósseos/química , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Fêmur/fisiologia , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Nus , Modelos Biológicos , Neovascularização Fisiológica/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/genética , Ratos , Crânio/irrigação sanguínea , Crânio/efeitos dos fármacos , Alicerces Teciduais/química
7.
J Colloid Interface Sci ; 436: 160-70, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25268820

RESUMO

Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications.


Assuntos
Álcalis/química , Fenômenos Fisiológicos Bacterianos , Células-Tronco Mesenquimais/citologia , Neoplasias/patologia , Titânio/química , Sequência de Bases , Primers do DNA , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real
8.
PLoS One ; 9(7): e102371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050556

RESUMO

Stem cell-based tissue engineering shows promise for bone regeneration and requires artificial microenvironments to enhance the survival, proliferation and differentiation of the seeded cells. Silk fibroin, as a natural protein polymer, has unique properties for tissue regeneration. The present study aimed to evaluate the influence of porous silk scaffolds on rat bone marrow stem cells (BMSCs) by lenti-GFP tracking both in vitro and in vivo in cranial bone defects. The number of cells seeded within silk scaffolds in rat cranial bone defects increased from 2 days to 2 weeks after implantation, followed by a decrease at eight weeks. Importantly, the implanted cells survived for 8 weeks in vivo and some of the cells might differentiate into endothelial cells and osteoblasts induced by the presence of VEGF and BMP-2 in the scaffolds to promote angiogenesis and osteogenesis. The results demonstrate that porous silk scaffolds provide a suitable niche to maintain long survival and function of the implanted cells for bone regeneration.


Assuntos
Regeneração Óssea , Fibroínas/química , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Rastreamento de Células , Células Cultivadas , Masculino , Porosidade , Próteses e Implantes , Ratos Endogâmicos F344 , Crânio/irrigação sanguínea , Crânio/fisiopatologia
9.
Int J Nanomedicine ; 9: 2387-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940056

RESUMO

As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration.


Assuntos
Substitutos Ósseos/síntese química , Magnésio/química , Células-Tronco Mesenquimais/citologia , Impressão Molecular/métodos , Osteoblastos/citologia , Osteogênese/fisiologia , Titânio/química , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Íons , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Gases em Plasma/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
10.
Tissue Eng Part A ; 20(23-24): 3303-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24568547

RESUMO

Adipose-derived stem cells (ADSCs) with the capacity of differentiating into osteo-like cells have been widely investigated for bone tissue engineering as a novel seed cell source. Recombinant human platelet-derived growth factor (rhPDGF-BB) is a clinically proven growth factor with the potential of promoting cell proliferation and osteogenic differentiation during the bone regeneration process. In this study, we investigated the effects of rhPDGF-BB on the proliferation and osteogenic and adipogenic differentiation of rat ADSCs and explored whether the extracellular signal-related kinase (ERK) signaling pathway might be involved. We found that rhPDGF-BB significantly enhanced ADSCs proliferation and osteogenic differentiation, as detected by MTT, real-time polymerase chain reaction (PCR), ALP activity assays, and calcium deposition in vitro, in concert with ERK pathway activation. In contrast, the adipogenesis of ADSCs, as detected by real-time PCR and Oil Red O staining, was suppressed in the presence of rhPDGF-BB. Furthermore, with the supplement of the ERK inhibitor PD98059, cell proliferation and osteogenesis were reduced; as expected, adipogenesis was enhanced. Subsequently, for the first time, we evaluated the effect of ADSCs associated with rhPDGF-BB on bone regeneration in a critical-sized rat calvarial defect model with silk scaffold as a carrier. Micro-computed tomography and histological analyses exhibited dramatically more new bone formation and trabecular number in the Silk/PDGF/ADSC group. These data indicated that rhPDGF-BB promoted cell proliferation and osteogenic differentiation and suppressed adipogenic differentiation in vitro via ERK pathway and that ADSCs associated with rhPDGF-BB could be a promising tissue-engineered construct for craniofacial bone regeneration in vivo.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Células-Tronco/citologia , Animais , Becaplermina , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA