Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cancer Lett ; 584: 216643, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246220

RESUMO

In the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect. We identified the myocyte enhancer factor 2C (MEF2C) as a transcriptional regulator of HIPK3 and uncovered HIPK3's role in downregulating the morphogenesis regulator microtubule-associated protein (MAP7) through ubiquitination. Phosphoproteome profiling revealed HIPK3's inhibitory effects on mTOR and Wnt pathways crucial in cell proliferation and movement. A combined treatment strategy involving oxaliplatin, rapamycin, and IWR1-1-endo effectively overcame platinum resistance induced by reduced HIPK3 expression. Monitoring HIPK3 levels could serve as a GC malignancy and platinum resistance indicator, with our proposed treatment strategy offering novel avenues for reversing resistance in gastric cancer.


Assuntos
Platina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Progressão da Doença , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
3.
Analyst ; 148(23): 6061-6069, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37902303

RESUMO

Gastric and colorectal cancers are significant causes of human mortality. Conventionally, the diagnosis of gastrointestinal tumors has been accomplished through image-based techniques, including endoscopic and biopsy procedures coupled with tissue staining. Most of these methods are invasive. In contrast, Raman spectroscopy has the advantages of being non-invasive and label-free and requiring no additional reagents, making it a potential tool for the detection of serum components. In this study, we collected Raman spectra of serum samples from patients with gastric cancer (n = 93) and colorectal cancer (n = 92) and from healthy individuals (n = 100). Analysis of Raman peak areas revealed that cancer patients had significantly higher peak areas at around 2923 cm-1 compared to normal individuals, which corresponded to the presence of lipids and proteins. We successfully achieved the early screening of gastrointestinal tumors using the improved gated recurrent unit (GRU) algorithm and traditional machine learning methods. The accuracy of identifying digestive tract tumors using different recognition models exceeds 84.72%, with support vector machine (SVM) and GRU achieving 100% accuracy. The use of GRU further demonstrated its ability to differentiate subtypes of gastric and colorectal cancers based on the degree of differentiation and stage, with a recognition accuracy exceeding 95%, which is challenging using traditional machine learning methods. Furthermore, our study revealed that principal component analysis (PCA) dimensionality reduction has a limited impact on the recognition results obtained using different recognition models.


Assuntos
Neoplasias Colorretais , Neoplasias Gastrointestinais , Neoplasias Gástricas , Humanos , Detecção Precoce de Câncer , Análise Espectral Raman , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Colorretais/diagnóstico
4.
Nat Commun ; 14(1): 6690, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872170

RESUMO

Colorectal cancer (CRC) patients with liver metastases usually obtain less benefit from immunotherapy, and the underlying mechanisms remain understudied. Here, we identify that fibrinogen-like protein 1 (FGL1), secreted from cancer cells and hepatocytes, facilitates the progression of CRC in an intraportal injection model by reducing the infiltration of T cells. Mechanistically, tumor-associated macrophages (TAMs) activate NF-ĸB by secreting TNFα/IL-1ß in the liver microenvironment and transcriptionally upregulate OTU deubiquitinase 1 (OTUD1) expression, which enhances FGL1 stability via deubiquitination. Disrupting the TAM-OTUD1-FGL1 axis inhibits metastatic tumor progression and synergizes with immune checkpoint blockade (ICB) therapy. Clinically, high plasma FGL1 levels predict poor outcomes and reduced ICB therapy benefits. Benzethonium chloride, an FDA-approved antiseptics, curbs FGL1 secretion, thereby inhibiting liver metastatic tumor growth. Overall, this study uncovers the critical roles and posttranslational regulatory mechanism of FGL1 in promoting metastatic tumor progression, highlighting the TAM-OTUD1-FGL1 axis as a potential target for cancer immunotherapy.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Neoplasias Retais , Humanos , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Microambiente Tumoral , Fibrinogênio/metabolismo , Proteases Específicas de Ubiquitina
5.
Clin Transl Med ; 13(9): e1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37712124

RESUMO

BACKGROUND: Predictive biomarkers for oesophageal squamous cell carcinoma (ESCC) immunotherapy are lacking, and immunotherapy resistance remains to be addressed. The role of long noncoding RNA (lncRNA) in ESCC immune escape and immunotherapy resistance remains to be elucidated. METHODS: The tumour-associated macrophage-upregulated lncRNAs and the exosomal lncRNAs highly expressed in ESCC immunotherapy nonresponders were identified by lncRNA sequencing and polymerase chain reaction assays. CRISPR-Cas9 was used to explore the functional roles of the lncRNA. RNA pull-down, MS2-tagged RNA affinity purification (MS2-TRAP) and RNA-binding protein immunoprecipitation (RIP) were performed to identify lncRNA-associated proteins and related mechanisms. In vivo, the humanized PBMC (hu-PBMC) mouse model was established to assess the therapeutic responses of specific lncRNA inhibitors and their combination with programmed cell death protein 1 (PD-1) monoclonal antibody (mAb). Single-cell sequencing, flow cytometry, and multiplex fluorescent immunohistochemistry were used to analyze immune cells infiltrating the tumour microenvironment. RESULTS: We identified a lncRNA that is involved in tumour immune evasion and immunotherapy resistance. High LINC02096 (RIME) expression in plasma exosomes correlates with a reduced response to PD-1 mAb treatment and poor prognosis. Mechanistically, RIME binds to mixed lineage leukaemia protein-1 (MLL1) and prevents ankyrin repeat and SOCS box containing 2 (ASB2)-mediated MLL1 ubiquitination, improving the stability of MLL1. RIME-MLL1 increases H3K4me3 levels in the promoter regions of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO-1), constitutively increasing the expression of PD-L1/IDO-1 in tumour cells and inhibiting CD8+ T cells infiltration and activation. RIME depletion in huPBMC-NOG mice significantly represses tumour development and improves the effectiveness of PD-1 mAb treatment by activating T-cell-mediated antitumour immunity. CONCLUSIONS: This study reveals that the RIME-MLL1-H3K4me3 axis plays a critical role in tumour immunosuppression. Moreover, RIME appears to be a potential prognostic biomarker for immunotherapy and developing drugs that target RIME may be a new therapeutic strategy that overcomes immunotherapy resistance and benefits patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Animais , Camundongos , Anticorpos Monoclonais , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Leucócitos Mononucleares , Proteína de Leucina Linfoide-Mieloide , Receptor de Morte Celular Programada 1 , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
6.
Cell Rep ; 42(6): 112576, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285266

RESUMO

Gastric mixed adenoneuroendocrine carcinoma (MANEC) is a clinically aggressive and heterogeneous tumor composed of adenocarcinoma (ACA) and neuroendocrine carcinoma (NEC). The genomic properties and evolutionary clonal origins of MANEC remain unclear. We conduct whole-exome and multiregional sequencing on 101 samples from 33 patients to elucidate their evolutionary paths. We identify four significantly mutated genes, TP53, RB1, APC, and CTNNB1. MANEC resembles chromosomal instability stomach adenocarcinoma in that whole-genome doubling in MANEC is predominant and occurs earlier than most copy-number losses. All tumors are of monoclonal origin, and NEC components show more aggressive genomic properties than their ACA counterparts. The phylogenetic trees show two tumor divergence patterns, including sequential and parallel divergence. Furthermore, ACA-to-NEC rather than NEC-to-ACA transition is confirmed by immunohistochemistry on 6 biomarkers in ACA- and NEC-dominant regions. These results provide insights into the clonal origin and tumor differentiation of MANEC.


Assuntos
Adenocarcinoma , Carcinoma Neuroendócrino , Neoplasias Gástricas , Humanos , Filogenia , Microdissecção , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Genômica
7.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244254

RESUMO

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Assuntos
NADP Trans-Hidrogenases , Neoplasias , Humanos , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Comput Struct Biotechnol J ; 21: 802-811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698976

RESUMO

Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted time, manpower and material resources. Thus, cell line identification is important and necessary. At present, the commonly used cell line identification methods need cell staining and culturing. There is therefore a need to develop a new method for the rapid and automated identification of cell lines. Raman spectroscopy has become one of the emerging techniques in the field of microbial identification, with the advantages of being rapid and noninvasive and providing molecular information for biological samples, which is beneficial in the identification of cell lines. In this study, we built a library of Raman spectra for gastric mucosal epithelial cell lines GES-1 and gastric cancer cell lines, such as AGS, BGC-823, HGC-27, MKN-45, MKN-74 and SNU-16. Five spectral datasets were constructed using spectral data and included the full spectrum, fingerprint region, high-wavelength number region and Raman background of Raman spectra. A stacking ensemble learning model, SL-Raman, was built for different datasets, and gastric cancer cell identification was achieved. For the gastric cancer cells we studied, the differentiation accuracy of SL-Raman was 100% for one of the gastric cancer cells and 100% for six of the gastric cancer cells. Additionally, the separation accuracy for two gastric cancer cells with different degrees of differentiation was 100%. These results demonstrate that Raman spectroscopy combined with SL-Raman may be a new method for the rapid and accurate identification of gastric cancer. In addition, the accuracy of 94.38% for classifying Raman spectral background data using machine learning demonstrates that the Raman spectral background contains some useful spectral features. These data have been overlooked in previous studies.

10.
Oncogene ; 41(49): 5266-5278, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316442

RESUMO

Dysregulated cholesterol metabolism is a hallmark of colorectal cancer (CRC). However, the usage of cholesterol-lowering agents seemed to have no benefit in CRC patients. In this study, we focused on the cholesterol-nuclear receptors (NRs) axis as a strategy. Cholesterol and its derivatives work as ligands for different nuclear receptors, thus promoting cancer progression. The key NR downstream of cholesterol in CRC is unknown. Here, we treated CRC cells with a cholesterol-lowering agent and lipoprotein-depleted conditioned medium, and then detected the change of the putative NRs. The results revealed that RORα/γ (Retinoic acid receptor-related Orphan Receptor α/γ) levels exhibited the most obvious increases in CRC cells subjected them to cholesterol deprivation. RORα/γ agonists significantly inhibited CRC cells proliferation and migration in vitro and in vivo. Also, RORα/γ overexpression repressed CRC cells proliferation and migration in vitro and in vivo and RORα/γ knockdown promoted it. Mechanistically, RORα/γ agonists promoted c-myc degradation by activating the transcription of the ubiquitinase NEDD4. Intriguingly, the combination of RORα/γ agonists and atorvastatin had a synergistic effect on inhibiting CRC cells. These findings demonstrate that the cholesterol- RORα/γ axis is important for maintaining c-myc protein levels. Combination therapy with atorvastatin and RORα/γ agonist is a promising therapeutic strategy for CRC.


Assuntos
Colesterol , Neoplasias Colorretais , Humanos , Atorvastatina/farmacologia , Proliferação de Células , Ligantes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
11.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805009

RESUMO

Metastasis is the main cause of death for patients suffering gastric cancer. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critical attributes of metastasis, both of which are regulated tightly by DNA methylation and Wnt/ß-catenin signaling. Here, we studied the functions of DNA dioxygenase TET1 in regulating Wnt signaling and in gastric cancer metastasis. Knocking-down and overexpressing TET1 in gastric cancer cells promoted and inhibited metastatic spreading to the liver in immune-deficient mice, respectively. TET1 showed inhibitory effects on metastasis-related features -EMT and CSC, which were reversed by interfering with Wnt/ß-catenin signaling. RNA-sequencing identified FOXO4 as a direct transactivating target of TET1. FOXO4 directly interacted with ß-catenin and recruited it in the cytoplasm, so as to inhibit ß-catenin-mediated transcription of Wnt target genes, including CSC marker EpCAM. Moreover, modulation of FOXO4 could reverse the effects of TET1 manipulation on EMT and self-renewal of CSCs. The analysis with clinical samples confirmed the value of FOXO4 as an independent prognostic predictor of patients' overall survival. Taken together, regulation of Wnt signaling by TET1/FOXO4 is essential for metastasis-associated cellular properties, and targeting TET1/FOXO4/ß-catenin pathway may serve as promising therapeutics in the prevention and treatment of gastric cancer metastasis.

12.
Exp Mol Med ; 54(6): 834-847, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760875

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most life- and health-threatening malignant diseases worldwide, especially in China. Long noncoding RNAs (lncRNAs) have emerged as important regulators of tumorigenesis and tumor progression. However, the roles and mechanisms of lncRNAs in ESCC require further exploration. Here, in combination with a small interfering RNA (siRNA) library targeting specific lncRNAs, we performed MTS and Transwell assays to screen functional lncRNAs that were overexpressed in ESCC. TMPO-AS1 expression was significantly upregulated in ESCC tumor samples, with higher TMPO-AS1 expression positively correlated with shorter overall survival times. In vitro and in vivo functional experiments revealed that TMPO-AS1 promotes the proliferation and metastasis of ESCC cells. Mechanistically, TMPO-AS1 bound to fused in sarcoma (FUS) and recruited p300 to the TMPO promoter, forming biomolecular condensates in situ to activate TMPO transcription in cis by increasing the acetylation of histone H3 lysine 27 (H3K27ac). Targeting TMPO-AS1 led to impaired ESCC tumor growth in a patient-derived xenograft (PDX) model. We found that TMPO-AS1 is required for cell proliferation and metastasis in ESCC by promoting the expression of TMPO, and both TMPO-AS1 and TMPO might be potential biomarkers and therapeutic targets in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Proteína FUS de Ligação a RNA , Timopoietinas , Condensados Biomoleculares , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , MicroRNAs/genética , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Timopoietinas/genética , Timopoietinas/metabolismo
13.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598328

RESUMO

Multiple primary tumor (MPT) is a special and rare cancer type, defined as more than two primary tumors presenting at the diagnosis in a single patient. The molecular characteristics and tumorigenesis of MPT remain unclear due to insufficient approaches. Here, we present MPTevol, a practical computational framework for comprehensively exploring the MPT from multiregion sequencing (MRS) experiments. To verify the utility of MPTevol, we performed whole-exome MRS for 33 samples of a rare patient with triple-primary tumors and three metastatic sites and systematically investigated clonal dynamics and metastatic routines. MPTevol assists in comparing genomic profiles across samples, detecting clonal evolutionary history and metastatic routines and quantifying the metastatic history. All triple-primary tumors were independent origins and their genomic characteristics were consistent with corresponding sporadic tumors, strongly supporting their independent tumorigenesis. We further showed two independent early monoclonal seeding events for the metastases in the ovary and uterus. We revealed that two ovarian metastases were disseminated from the same subclone of the primary tumor through undergoing whole-genome doubling processes, suggesting metastases-to-metastases seeding occurred when tumors had similar microenvironments. Surprisingly, according to the metastasis timing model of MPTevol, we found that primary tumors of about 0.058-0.124 cm diameter have been disseminating to distant organs, which is much earlier than conventional clinical views. We developed MPT-specialized analysis framework MPTevol and demonstrated its utility in explicitly resolving clonal evolutionary history and metastatic seeding routines with a rare MPT case. MPTevol is implemented in R and is available at https://github.com/qingjian1991/MPTevol under the GPL v3 license.


Assuntos
Neoplasias Primárias Múltiplas , Carcinogênese , Feminino , Genômica , Humanos , Mutação , Microambiente Tumoral , Sequenciamento do Exoma
14.
Nat Commun ; 13(1): 2342, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487942

RESUMO

The genetic basis of colorectal cancer (CRC) and its clinical associations remain poorly understood due to limited samples or targeted genes in current studies. Here, we perform ultradeep whole-exome sequencing on 1015 patients with CRC as part of the ChangKang Project. We identify 46 high-confident significantly mutated genes, 8 of which mutate in 14.9% of patients: LYST, DAPK1, CR2, KIF16B, NPIPB15, SYTL2, ZNF91, and KIAA0586. With an unsupervised clustering algorithm, we propose a subtyping strategy that classisfies CRC patients into four genomic subtypes with distinct clinical characteristics, including hypermutated, chromosome instability with high risk, chromosome instability with low risk, and genome stability. Analysis of immunogenicity uncover the association of immunogenicity reduction with genomic subtypes and poor prognosis in CRC. Moreover, we find that mitochondrial DNA copy number is an independent factor for predicting the survival outcome of CRCs. Overall, our results provide CRC-related molecular features for clinical practice and a valuable resource for translational research.


Assuntos
Neoplasias Colorretais , Exoma , Instabilidade Cromossômica , Neoplasias Colorretais/genética , Exoma/genética , Genômica , Humanos , Cinesinas , Sequenciamento do Exoma/métodos
15.
Signal Transduct Target Ther ; 7(1): 54, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35221331

RESUMO

Metabolic enzymes have an indispensable role in metabolic reprogramming, and their aberrant expression or activity has been associated with chemosensitivity. Hence, targeting metabolic enzymes remains an attractive approach for treating tumors. However, the influence and regulation of cysteine desulfurase (NFS1), a rate-limiting enzyme in iron-sulfur (Fe-S) cluster biogenesis, in colorectal cancer (CRC) remain elusive. Here, using an in vivo metabolic enzyme gene-based clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library screen, we revealed that loss of NFS1 significantly enhanced the sensitivity of CRC cells to oxaliplatin. In vitro and in vivo results showed that NFS1 deficiency synergizing with oxaliplatin triggered PANoptosis (apoptosis, necroptosis, pyroptosis, and ferroptosis) by increasing the intracellular levels of reactive oxygen species (ROS). Furthermore, oxaliplatin-based oxidative stress enhanced the phosphorylation level of serine residues of NFS1, which prevented PANoptosis in an S293 phosphorylation-dependent manner during oxaliplatin treatment. In addition, high expression of NFS1, transcriptionally regulated by MYC, was found in tumor tissues and was associated with poor survival and hyposensitivity to chemotherapy in patients with CRC. Overall, the findings of this study provided insights into the underlying mechanisms of NFS1 in oxaliplatin sensitivity and identified NFS1 inhibition as a promising strategy for improving the outcome of platinum-based chemotherapy in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Proteínas Ferro-Enxofre , Apoptose/genética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/uso terapêutico , Oxaliplatina/farmacologia , Fosforilação
16.
Cancer Res ; 81(10): 2636-2650, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782099

RESUMO

Long noncoding RNAs (lncRNA) are involved in tumorigenesis and drug resistance. However, the roles and underlying mechanisms of lncRNAs in colorectal cancer are still unknown. In this work, through transcriptomic profiling analysis of 21 paired tumor and normal samples, we identified a novel colorectal cancer-related lncRNA, MNX1-AS1. MNX1-AS1 expression was significantly upregulated in colorectal cancer and associated with poor prognosis. In vitro and in vivo gain- and loss-of-function experiments showed that MNX1-AS1 promotes the proliferation of colorectal cancer cells. MNX1-AS1 bound to and activated Y-box-binding protein 1 (YB1), a multifunctional RNA/DNA-binding protein, and prevented its ubiquitination and degradation. A marked overlap between genes that are differentially expressed in MNX1-AS1 knockdown cells and transcriptional targets of YB1 was observed. YB1 knockdown mimicked the loss of viability phenotype observed upon depletion of MNX1-AS1. In addition, MYC bound the promoter of the MNX1-AS1 locus and activated its transcription. In vivo experiments showed that ASO inhibited MNX1-AS1, which suppressed the proliferation of colorectal cancer cells in both cell-based and patient-derived xenograft models. Collectively, these findings suggest that the MYC-MNX1-AS1-YB1 axis might serve as a potential biomarker and therapeutic target in colorectal cancer. SIGNIFICANCE: This study highlights the discovery of a novel colorectal cancer biomarker and therapeutic target, MNX1-AS1, a long noncoding RNA that drives proliferation via a MYC/MNX1-AS1/YB1 signaling pathway. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2636/F1.large.jpg.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Antissenso/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box/química , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
17.
Cancer Med ; 10(7): 2423-2441, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666372

RESUMO

BACKGROUND: Numerous reports on microRNAs have illustrated their role in tumor growth and metastasis. Recently, a new prognostic factor, miR-125b-2-3p, has been identified for predicting chemotherapeutic sensitivity in advanced colorectal cancer (CRC). However, the specific mechanisms and biological functions of miR-125b-2-3p in advanced CRC under chemotherapy have yet to be elucidated. METHODS: MiR-125b-2-3p expression was detected by real-time PCR (RT-PCR) in CRC tissues. The effects of miR-125b-2-3p on the growth, metastasis, and drug sensitivity of CRC cells were tested in vitro and in vivo. Based on multiple databases, the upstream competitive endogenous RNAs (ceRNAs) and the downstream genes for miR-125b-2-3p were predicted by bioinformatic analysis, followed by the experiments including luciferase reporter assays, western blot assays, and so on. RESULTS: MiR-125b-2-3p was significantly lowly expressed in the tissues and cell lines of CRC. Higher expression of miR-125b-2-3p was associated with relatively lower proliferation rates and fewer metastases. Moreover, overexpressed miR-125b-2-3p remarkably improved chemotherapeutic sensitivity of CRC in vivo and in vitro. Mechanistically, miR-125b-2-3p was absorbed by long noncoding RNA (lncRNA) XIST regulating WEE1 G2 checkpoint kinase (WEE1) expression. The upregulation of miR-125b-2-3p inhibited the proliferation and epithelial-mesenchymal transition (EMT) of CRC induced by lncRNA XIST. CONCLUSIONS: Lower miR-125b-2-3p expression resulted in lower sensitivity of CRC to chemotherapy and was correlated with poorer survival of CRC patients. LncRNA XIST promoted CRC metastasis acting as a ceRNA for miR-125b-2-3p to mediate WEE1 expression. LncRNA XIST-miR-125b-2-3p-WEE1 axis not only regulated CRC growth and metastasis but also contributed to chemotherapeutic resistance to CRC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Proteínas Tirosina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
18.
Clin Transl Immunology ; 9(10): e1173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033616

RESUMO

OBJECTIVES: Although the genomic landscape of small-cell carcinoma of the oesophagus (SCCE) has been dissected, its transcriptome-level aberration and immune microenvironment status are unknown. METHODS: Using ultra-deep whole transcriptome sequencing, we analysed the expression profile of nine paired SCCE samples and compared the transcriptome with public transcriptomic data set of normal oesophageal mucosa and other cancer types. Based on the transcriptome data, the immune signatures were investigated. The genomic data of 55 SCCE samples were also applied for immune checkpoint blockade therapy (ICBT) biomarker evaluation including microsatellite instability (MSI) status, tumor mutation burden (TMB) and neoantigen burden (TNB). Also, we evaluated the CD8, CD68 and programmed death-ligand 1 (PD-L1) in 62 retrospective SCCE samples with IHC assay. RESULTS: Differential expression analysis revealed that the cell cycle, p53, and Wnt pathways are significantly deregulated in SCCE. Immune microenvironment analysis showed that high leucocyte infiltration and adaptive immune resistance did occur in certain individuals, while the majority showed a relatively suppressive immune status. Immune checkpoints such as CD276 and LAG-3 were upregulated, and higher M2 macrophage infiltration in tumor tissues. Furthermore, normal tissues adjacent to the tumors of SCCE presented a more activated inflammatory status than tumor-free healthy controls. These observations showed that ICBT might benefit SCCE patients. As the critical biomarker of ICBT, TMB of SCCE was 3.64 with the predictive objective response rate 13.2%, while the PD-L1-positive rate was 43%. CONCLUSIONS: Our study systematically characterized the immune microenvironment in small-cell carcinoma of the esophagus and provided evidence that several patients with SCCE may benefit from immune checkpoint blockade therapy.

19.
Signal Transduct Target Ther ; 5(1): 183, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900990

RESUMO

The acidic tumor microenvironment provides an energy source driving malignant tumor progression. Adaptation of cells to an acidic environment leads to the emergence of cancer stem cells. The expression of the vitamin D receptor (VDR) is closely related to the initiation and development of colorectal carcinoma (CRC), but its regulatory mechanism in CRC stem cells is still unclear. Our study revealed that acidosis reduced VDR expression by downregulating peroxisome proliferator-activated receptor delta (PPARD) expression. Overexpression of VDR effectively suppressed the stemness and oxaliplatin resistance of cells in acidosis. The nuclear export signal in VDR was sensitive to acidosis, and VDR was exported from the nucleus. Chromatin immunoprecipitation (ChIP) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses showed that VDR transcriptionally repressed SRY-box 2 (SOX2) by binding to the vitamin D response elements in the promoter of SOX2, impairing tumor growth and drug resistance. We demonstrated that a change in the acidic microenvironment combined with overexpression of VDR substantially restricted the occurrence and development of CRC in vivo. These findings reveal a new mechanism by which acidosis could affect the stemness of CRC cells by regulating the expression of SOX2 and show that abnormal VDR expression leads to ineffective activation of vitamin D signaling, resulting in a lack of efficacy of vitamin D in antineoplastic process.


Assuntos
Neoplasias Colorretais/genética , PPAR delta/genética , Receptores de Calcitriol/genética , Fatores de Transcrição SOXB1/genética , Acidose/genética , Acidose/patologia , Ácidos/metabolismo , Proliferação de Células/genética , Cromatina/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Compostos Organoplatínicos/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Transl Immunology ; 9(9): e1172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32994998

RESUMO

OBJECTIVES: Anti-PD-1 immune checkpoint blockade represents the onset of a new era in cancer immunotherapy. However, robust predictors are necessary for screening patients with immune checkpoint-responsive oesophageal squamous cell carcinoma (ESCC). METHODS: We obtained biopsy samples from an ESCC patient with mixed responses. The expression of CD4, CD8, CD68, PD-L1, RBPJL and IL-16 was analysed by immunohistochemistry, and the correlation with prognostic value was obtained from the GEPIA portal. T-cell functions were examined by flow cytometry, MTS and transwell assays. The secreted cytokines were identified using an Inflammation Array Kit. The concentration of soluble IFN-γ was measured by enzyme-linked immunosorbent assay. The clinical benefit of RBPJL was examined in a PBMC xenograft mouse model. RESULTS: The patient had an exceptional clinical response with shrinkage of the primary oesophageal and lung metastatic lesions as well as enlargement of liver metastatic lesions after toripalimab monotherapy. Four liver-specific gene mutations were identified. RBPJL showed better response to toripalimab in the PBMC cell-derived xenograft (CDX) ESCC model. Conditional medium from RBPJL overexpression induced chemotaxis and proliferation of T lymphocytes, as well as Th2/Th1 differentiation through the RBPJL-NF-κB-IL-16 axis in vitro. These functions were all inhibited by the p.P476S mutation of RBPJL (RBPJL (p.P476S)). CONCLUSIONS: We report for the first time that RBPJL (p.P476S) promotes tumor growth in ESCC and inhibits the efficacy of anti-PD-1 therapy through blunting T-cell responses. Our findings provide a potential new predictor for evaluating the efficacy of anti-PD-1 therapy in ESCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA