Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Oral Health ; 24(1): 32, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184544

RESUMO

BACKGROUND: The neck management of clinical-nodal negative (cN0) oral squamous cell carcinoma (OSCC) remains controversial. Elective neck dissection (END) and observation are the main strategies, but it is still not clear who could benefit the most from END. The purpose of this study was to clarify the potential clinical factors that affect the therapeutic value of END and to explore the actual characteristics associated with benefit from END. METHODS: Patients with cN0 OSCC were identified in the SEER database from 2000 to 2019. 5-year Overall survival (OS) and disease-specific survival (DSS) were analyzed using the Kaplan‒Meier method, and the hazard ratios (HRs) for survival were estimated using the Cox regression model. Multiple subgroup analyses of DSS and OS among different factors, comparing END and No END, were performed. RESULTS: A total of 17,019 patients with cN0 OSCC were included. The basic survival analysis and Cox regression model showed that END increased the probability of 5-year DSS and OS and was an independent prognostic factor. However, among patients who underwent only primary tumor surgery, no significant differences were found between the END and No END groups in 5-year DSS (P = 0. 585) and OS (P = 0.465). Further subgroup analysis showed that primary sites and T stage, but not other factors, might influence the benefit of END. Significant differences were found for T1 (P < 0.001 for OS) and T2 (P = 0.001 for DSS and < 0.001 for OS) tongue squamous cell carcinoma (TSCC) but not for other primary tumor sites. CONCLUSION: This large-scale retrospective population-based cohort study suggests that not all patients with cN0 OSCC could benefit from END. Patients with cN0 TSCC are recommended to undergo END, especially with early-stage tumors.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Esvaziamento Cervical , Neoplasias Bucais/cirurgia , Estudos de Coortes , Estudos Retrospectivos
2.
Immunology ; 170(4): 527-539, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37641430

RESUMO

Skp2 plays multiple roles in malignant tumours. Here, we revealed that Skp2 negatively regulates type-I interferon (IFN-I)-mediated antiviral activity. We first noticed that Skp2 can promote virus infection in cells. Further studies demonstrated that Skp2 interacts with IFN-I receptor 2 (IFNAR2) and promotes K48-linked polyubiquitination of IFNAR2, which accelerates the degradation of IFNAR2 proteins. Skp2-mediated downregulation of IFNAR2 levels inhibits IFN-I signalling and IFN-I-induced antiviral activity. In addition, we uncovered for the first time that the antibiotic ceftazidime can act as a repressor of Skp2. Ceftazidime reduces cellular Skp2 levels, thus enhancing IFNAR2 stability and IFN-I antiviral activity. This study reveals a new role of Skp2 in regulating IFN-I signalling and IFN-I antiviral activity and reports the antibiotic ceftazidime as a potential repressor of Skp2.


Assuntos
Interferon Tipo I , Interferon Tipo I/metabolismo , Ceftazidima , Linhagem Celular , Antivirais/farmacologia , Antibacterianos , Receptor de Interferon alfa e beta
3.
Front Pharmacol ; 14: 1169608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180717

RESUMO

In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.

4.
J Cell Mol Med ; 27(8): 1131-1143, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965158

RESUMO

During exogenous bone-graft-mediated bone defect repair, macrophage inflammation dictates angiogenesis and bone regeneration. Exosomes from different human cells have shown macrophage immunomodulation-mediated bone regeneration potential. However, the effect of human serum-derived exosomes (serum-Exo) on macrophage immunomodulation-mediated angiogenesis during bone defect repair has not been investigated yet. In this study, we explored the effects of serum-Exo on macrophage inflammation regulation-mediated angiogenesis during bone defect repair and preliminarily elucidated the mechanism. Healthy serum-Exo was isolated by ultracentrifugation. The effect of serum-Exo on LPS-induced M1 macrophage inflammation was analysed in vitro. The conditioned medium of serum-Exo-treated LPS-induced M1 macrophage (serum-Exo-treated M1 macrophage-CM) was used to culture human umbilical vein endothelial cells (HUVEC), and the effect on angiogenesis was analysed by western blot, qRT-PCR, etc. mRNA-sequencing of HUVECs was performed to identify deferentially expressed genes. Finally, the rat mandibular defect model was established and treated with Bio-Oss and Bio-Oss + Exo. The effect of the Bio-Oss + Exo combination on mandibular bone regeneration was observed by micro-computed tomography (micro-CT), haematoxylin and eosin (HE) staining, Masson staining, and immunohistochemical staining. Serum-Exo promoted the proliferation of RAW264.7 macrophages and reduced the expression of M1-related genes such as IL-6, IL-1ß, iNOS, and CD86. Serum-Exo-treated M1 macrophage-CM induced the proliferation, migration, and angiogenic differentiation of HUVEC, as well as the expression of H-type blood vessel markers CD31 and endomucin (EMCN), compared with M1 macrophage-CM. Moreover, higher expression of vascular endothelial adhesion factor 1 (VCAM1) in HUVEC cultured with serum-Exo-treated M1 macrophage-CM compared with M1 macrophages-CM. Inhibition of VCAM1 signalling abrogated the pro-angiogenic effect of serum-Exo-treated M1 macrophage-CM on HUVEC. Local administration of serum-Exo during mandibular bone defect repair reduced the number of M1 macrophages and promoted angiogenesis and osteogenesis. Collectively, our results demonstrate the macrophage inflammation regulation-mediated pro-angiogenic potential of serum-Exo during bone defect repair possibly via upregulation of VCAM1 signalling in HUVEC.


Assuntos
Exossomos , Humanos , Ratos , Animais , Exossomos/metabolismo , Lipopolissacarídeos/metabolismo , Microtomografia por Raio-X , Regeneração Óssea/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos
5.
Int Immunopharmacol ; 114: 109595, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700774

RESUMO

Methotrexate (MTX) is used to treat rheumatoid arthritis, acute leukemia, and psoriasis. MTX can cause certain side effects, such as myelosuppression, while the exact mechanism of myelosuppression caused by MTX is unknown. Notch signaling pathway has been considered to be essential to regulate hematopoietic stem cell (HSC) regeneration and homeostasis, thus contributing to bone marrow hematopoiesis. However, whether MTX affects Notch signaling remains unexplored. Here, our study provides evidence that MTX strongly suppresses the Notch signaling pathway. We found that MTX inhibited the interaction between Nedd4 with Numb, thus restricting K48-linked polyubiquitination of Numb and stabilizing Numb proteins. This in turn inhibited the Notch signaling pathway by reducing Notch1 protein levels. Interestingly, we found that a monomeric drug, Triptolide, is capable of alleviating the inhibitory effect of MTX on Notch signaling pathway. This study promotes our understanding of MTX-mediated regulation of Notch signaling and could provide ideas to alleviate MTX-induced myelosuppression.


Assuntos
Metotrexato , Receptores Notch , Proteínas de Membrana/metabolismo , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Receptor Notch1 , Receptores Notch/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
J Am Chem Soc ; 145(2): 1118-1128, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546850

RESUMO

A normal phosphorylation state is essential for the function of proteins. Biased regulation frequently results in morbidity, especially for the hyperphosphorylation of oncoproteins. The hyperphosphorylation of ASK1 at Thr838 leads to a persistently high activity state, which accelerates the course of gastric cancer. Under normal conditions, PP5 specifically dephosphorylates p-ASK1T838 in cells, thereby weakening ASK1 to a low-basal activity state. However, in tumor types, PP5 shows low activity with a self-inhibition mechanism, making p-ASK1T838 remain at a high level. Thus, we aim to design phosphatase recruitment chimeras (PHORCs) through a proximity-mediated effect for specifically accelerating the dephosphorylation of p-ASK1T838. Herein, we describe DDO3711 as the first PP5-recruiting PHORC, which is formed by connecting a small molecular ASK1 inhibitor to a PP5 activator through a chemical linker, to effectively decrease the level of p-ASK1T838 in vitro and in vivo. DDO3711 shows preferable antiproliferative activity (IC50 = 0.5 µM) against MKN45 cells through a direct binding and proximity-mediated mechanism, while the ASK1 inhibitor and the PP5 activator, used alone or in combination, exhibit no effect on MKN45 cells. Using DDO3711, PHORCs are identified as effective tools to accelerate the dephosphorylation of POIs and provide important evidence to achieve precise phosphorylation regulation, which will promote confidence in the further regulation of abnormally phosphorylated oncoproteins.


Assuntos
MAP Quinase Quinase Quinase 5 , Fosfoproteínas Fosfatases , Apoptose , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Transdução de Sinais , Antineoplásicos/química , MAP Quinase Quinase Quinase 5/química
7.
J Stomatol Oral Maxillofac Surg ; 124(2): 101304, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36208836

RESUMO

BACKGROUND: In clinical practice, it is risky to extract bone-impacted teeth and they're prone to a variety of complications, such as pathological fracture, adjacent tooth fracture, maxillary sinus perforation, and so on, making it difficult for clinicians to decide whether to extract them. PURPOSE: In order to illustrate our opinions on the possibility of extracting full third molars (M3), 360 examples of complete third molars were analyzed in this study. MATERIALS AND METHOD: We investigated 2189 patients, and 261 of them provided CBCT images of 360 teeth. assessing the degree of second molar(M2) root absorption in connection to age, impacted relationship, contact part, calculating the odds ratio (OR) and 95% confidence interval using the Logistic regression analysis equation. RESULT: Bone-impacted M3 occurred in 11.92% (261/2189) of patients with "impacted teeth" diagnoses. There was a significant difference between the occurrence of M2ERR and the contact parts (P value<0.001), and only the type of vertical impaction differed significantly from Level 3 (P < 0.05). CONCLUSIONS: 1) M3 should be removed if root resorption has not occurred in M2. 2) Root resorption is more likely to occur when M3 crown and M2 apical contact. 3) Enough experience, precise preoperative assessment can reduce the dangers to a minimum.


Assuntos
Reabsorção da Raiz , Dente Impactado , Humanos , Estudos Retrospectivos , Reabsorção da Raiz/complicações , Reabsorção da Raiz/epidemiologia , Tomografia Computadorizada de Feixe Cônico/efeitos adversos , Tomografia Computadorizada de Feixe Cônico/métodos , Dente Molar , Dente Serotino/cirurgia , Dente Impactado/diagnóstico , Dente Impactado/epidemiologia , Dente Impactado/cirurgia
8.
BMC Cancer ; 22(1): 530, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545767

RESUMO

BACKGROUNDS: Salivary biomarkers hold huge potential for the non-invasive diagnosis of oral squamous cell carcinoma. Angiogenic factors and matrix-metalloproteinases (MMPs) are highly expressed in OSCC tissue, but their expression patterns in the saliva are unknown. This study aimed to analyze the levels of angiogenic factors and MMPs in tumor tissue and saliva of OSCC patients. METHODS: OSCC-tissue, adjacent normal tissue (ANT), saliva from OSCC patients, and healthy controls were obtained. The expression patterns of angiogenic factors and MMPs were analyzed by immunohistochemistry, protein chip array, and RT-qPCR. RESULTS: Results showed higher expression of ANG, ANG-2, HGF, PIGF, VEGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in OSCC-tissues compared to the ANT. Among the overexpressed markers in OSCC-tissues, HGF, VEGF, PIGF, PDGF-BB, MMP-1, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, and TIMP-2 were significantly upregulated in the saliva of OSCC patients compared to healthy controls. CONCLUSIONS: The levels of HGF, VEGF, PIGF, MMP-1, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, and TIMP-2 were upregulated both in OSCC tissue and saliva of OSCC patients. Bioinformatic analysis revealed the correlation of these factors with patient survival and cancer functional states in head and neck cancer, indicating these factors as possible saliva-based non-invasive diagnostic/prognostic markers and therapeutic targets of OSCC.


Assuntos
Biomarcadores Tumorais , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Biomarcadores Tumorais/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Fator de Crescimento Placentário/metabolismo , Saliva/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Front Oncol ; 12: 862751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494000

RESUMO

Background: Accumulating evidence suggests that dysregulation of Chordin-like 1 (CHRDL1) is associated with malignant biological behaviors in multiple cancers. However, the exact function and molecular mechanism of CHRDL1 in oral squamous cell carcinoma (OSCC) remain unclear. Methods: The expression levels of CHRDL1 in OSCC tissues and CAL27 cells were determined by RT-qPCR. Immunohistochemical staining was applied to detect CHRDL1 protein expression in sample tissues from OSCC patients. Gain of function and knockdown by lentivirus were further used to examine the effects of CHRDL1 on cell proliferation, migration, invasion, and adhesion in OSCC. Tail vein injection of CAL27 cells with dysregulated CHRDL1 expression was further used to examine the effect of CHRDL1 on lung colonization. RNA sequencing was performed to explore the molecular mechanisms of CHRDL1 that underlie the progression of OSCC. Results: CHRDL1 was significantly downregulated in OSCC tissues and CAL27 cells compared to controls. CHRDL1 knockdown enhanced migration, invasion, adhesion, and EMT, but not proliferation, in CAL27 cells. Overexpression of CHRDL1 had the opposite effects. Moreover, CHRDL1 was proven to inhibit tumor metastasis in vivo. Mechanistically, MAPK signaling pathway components, including ERK1/2, p38, and JNK, were found to regulate the malignant biological behaviors of CAL27 cells. Conclusions: Our results suggest that CHRDL1 has an inhibitory effect on OSCC metastasis via the MAPK signaling pathway, which provides a new possible potential therapeutic target against OSCC.

10.
Front Cell Dev Biol ; 10: 856468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433679

RESUMO

Serine incorporator (SERINC) proteins 1-5 (SERINC1-5) are involved in the progression of several diseases. SERINC2-4 are carrier proteins that incorporate the polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine and sphingolipids. SERINC genes are also differentially expressed in tumors. Abnormal expression of SERINC proteins occurs in human cancers of the breast, lung, colon, liver, and various glands, as well as in mouse testes. SERINC proteins also affect cleft lip and palate and nerve-related diseases, such as seizure Parkinsonism and borderline personality. Moreover, SERINC proteins have garnered significant interest as retroviral restriction factors, spurring efforts to define their function and elucidate the mechanisms through which they operate when associated with viruses. Human SERINC proteins possess antiviral potential against human immunodeficiency virus (HIV), SARS-COV-2, murine leukemia virus (MLV), equine infectious anemia virus (EIAV), and hepatitis B virus (HBV). Furthermore, the crystal structure is known, and the critical residues of SERINC5 that act against HIV have been identified. In this review, we discuss the most prevalent mechanisms by which SERINC3 and SERINC5 antagonize viruses and focus on the potential therapeutic applications of SERINC5/3 against HIV.

11.
J Biol Chem ; 297(5): 101163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481841

RESUMO

Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non-small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53ß and p53γ, comprising exons 1 to 9ß or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53ß and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Células A549 , Animais , Humanos , Camundongos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
12.
Genetics ; 215(4): 1067-1084, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546498

RESUMO

The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.


Assuntos
Nadadeiras de Animais/fisiologia , Animais Geneticamente Modificados/fisiologia , Padronização Corporal , Eletricidade , Regulação da Expressão Gênica , Canais de Potássio/metabolismo , Peixe-Zebra/fisiologia , Animais , Fontes de Energia Bioelétrica , Células Epiteliais/metabolismo , Músculos/metabolismo , Canais de Potássio/genética , Somitos/metabolismo
13.
J Genet ; 96(6): 1021-1026, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29321362

RESUMO

Dyschromatosis symmetrica hereditaria (DSH) is a rare autosomal dominant pigmentary genodermatosis, which is characterized by a mixture of hyperpigmented and hypopigmented macules on the dorsal of the hands and feet, and on the face presented like freckle. Identification of RNA-specific adenosine deaminase 1 (ADAR1) gene results in DSH. This study was mainly to explore the pathogenic mutation of ADAR1 gene and provide genetics counselling and prenatal diagnostic testing for childbearing individuals.Mutational analysis of ADAR1 gene was performed by polymerase chain reaction (PCR) and electrophoretic separation of PCR products by 1.5% agarose gel electrophoresis. The coding exons and intron/exon flanking regions followed by bidirectional sequencing was performed on all participants. In this study, we found that a 28 year-old male patient harbouring a deleterious substitution of Leu1052Pro in the ADAR1 gene in a typical DSH family. His mother suffered from the DSH also owns the same mutation. This mutation, however, is not identified in the unaffected members in this family and those 200 normal controls. In summary, this new mutation Leu1052Pro reported here is pathogenic and detrimental for DSH. Our finding not only enriches mutation database and contributes to dissecting further the correlation between mutation position and phenotypical features of DSH, but also provides genetics counselling and prenatal diagnostic testing for childbearing couple.


Assuntos
Adenosina Desaminase/genética , Predisposição Genética para Doença , Transtornos da Pigmentação/congênito , Pigmentação/genética , Proteínas de Ligação a RNA/genética , Adulto , Análise Mutacional de DNA , Éxons/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/fisiopatologia
14.
Clin Cancer Res ; 21(20): 4630-41, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26106074

RESUMO

PURPOSE: The objective of the study was to determine whether astrocytes and brain endothelial cells protect glioma cells from temozolomide through an endothelin-dependent signaling mechanism and to examine the therapeutic efficacy of the dual endothelin receptor antagonist, macitentan, in orthotopic models of human glioblastoma. EXPERIMENTAL DESIGN: We evaluated several endothelin receptor antagonists for their ability to inhibit astrocyte- and brain endothelial cell-induced protection of glioma cells from temozolomide in chemoprotection assays. We compared survival in nude mice bearing orthotopically implanted LN-229 glioblastomas or temozolomide-resistant (LN-229(Res) and D54(Res)) glioblastomas that were treated with macitentan, temozolomide, or both. Tumor burden was monitored weekly with bioluminescence imaging. The effect of therapy on cell division, apoptosis, tumor-associated vasculature, and pathways associated with cell survival was assessed by immunofluorescent microscopy. RESULTS: Only dual endothelin receptor antagonism abolished astrocyte- and brain endothelial cell-mediated protection of glioma cells from temozolomide. In five independent survival studies, including temozolomide-resistant glioblastomas, 46 of 48 (96%) mice treated with macitentan plus temozolomide had no evidence of disease (P < 0.0001), whereas all mice in other groups died. In another analysis, macitentan plus temozolomide therapy was stopped in 16 mice after other groups had died. Only 3 of 16 mice eventually developed recurrent disease, 2 of which responded to additional cycles of macitentan plus temozolomide. Macitentan downregulated proteins associated with cell division and survival in glioma cells and associated endothelial cells, which enhanced their sensitivity to temozolomide. CONCLUSIONS: Macitentan plus temozolomide are well tolerated, produce durable responses, and warrant clinical evaluation in glioblastoma patients.


Assuntos
Dacarbazina/análogos & derivados , Antagonistas dos Receptores de Endotelina/farmacologia , Glioblastoma/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Temozolomida
15.
Neuro Oncol ; 16(12): 1585-98, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008093

RESUMO

BACKGROUND: Recent evidence suggests that astrocytes protect cancer cells from chemotherapy by stimulating upregulation of anti-apoptotic genes in those cells. We investigated the possibility that activation of the endothelin axis orchestrates survival gene expression and chemoprotection in MDA-MB-231 breast cancer cells and H226 lung cancer cells. METHODS: Cancer cells, murine astrocytes, and murine fibroblasts were grown in isolation, and expression of endothelin (ET) peptides and ET receptors (ETAR and ETBR) compared with expression on cancer cells and astrocytes (or cancer cells and fibroblasts) that were co-incubated for 48 hours. Type-specific endothelin receptor antagonists were used to evaluate the contribution of ETAR and ETBR to astrocyte-induced activation of the protein kinase B (AKT)/mitogen-activated protein kinase (MAPK) signal transduction pathways, anti-apoptotic gene expression, and chemoprotection of cancer cells. We also investigated the chemoprotective potential of brain endothelial cells and microglial cells. RESULTS: Gap junction signaling between MDA-MB-231 cancer cells and astrocytes stimulates upregulation of interleukin 6 (IL-6) and IL-8 expression in cancer cells, which increases ET-1 production from astrocytes and ET receptor expression on cancer cells. ET-1 signals for activation of AKT/MAPK and upregulation of survival proteins that protect cancer cells from taxol. Brain endothelial cell-mediated chemoprotection of cancer cells also involves endothelin signaling. Dual antagonism of ETAR and ETBR is required to abolish astrocyte- and endothelial cell-mediated chemoprotection. CONCLUSIONS: Bidirectional signaling between astrocytes and cancer cells involves upregulation and activation of the endothelin axis, which protects cancer cells from cytotoxicity induced by chemotherapeutic drugs.


Assuntos
Astrócitos/metabolismo , Neoplasias da Mama/genética , Endotelinas/genética , Neoplasias Pulmonares/genética , Receptores de Endotelina/genética , Células 3T3 , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Endotelinas/metabolismo , Feminino , Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Receptores de Endotelina/metabolismo , Regulação para Cima
16.
Neoplasia ; 13(2): 167-79, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21403842

RESUMO

Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Antagonistas dos Receptores de Endotelina , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Paclitaxel/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Peritoneais/prevenção & controle , Neoplasias Peritoneais/secundário , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biol Chem ; 283(50): 35295-304, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18940803

RESUMO

We previously described the novel zinc finger protein ZKSCAN3 as a new "driver" of colon cancer progression. To investigate the underlying mechanism and because the predicted structural features (tandem zinc fingers) are often present in transcription factors, we hypothesized that ZKSCAN3 regulates the expression of a gene(s) favoring tumor progression. We employed unbiased screening to identify a DNA binding motif and candidate downstream genes. Cyclic amplification and selection of targets using a random oligonucleotide library and ZKSCAN3 protein identified KRDGGG as the DNA recognition motif. In expression profiling, 204 genes were induced 2-29-fold, and 76 genes reduced 2-5-fold by ZKSCAN3. To enrich for direct targets, we eliminated genes under-represented (<3) for the ZKSCAN3 binding motif (identified by CAST-ing) in 2 kilobases of regulatory sequence. Up-regulated putative downstream targets included genes contributing to growth (c-Met-related tyrosine kinase (MST1R), MEK2; the guanine nucleotide exchanger RasGRP2, insulin-like growth factor-2, integrin beta 4), cell migration (MST1R), angiogenesis (vascular endothelial growth factor), and proteolysis (MMP26; cathepsin D; PRSS3 (protease serine 3)). We pursued integrin beta 4 (induced up to 6-fold) as a candidate target because it promotes breast cancer tumorigenicity and stimulates phosphatidyl 3-kinase implicated in colorectal cancer progression. ZKSCAN3 overexpression/silencing modulated integrin beta 4 expression, confirming the array analysis. Moreover, ZKSCAN3 bound to the integrin beta 4 promoter in vitro and in vivo, and the integrin beta 4-derived ZKSCAN3 motif fused upstream of a tk-Luc reporter conferred ZKSCAN3 sensitivity. Integrin beta 4 knockdown by short hairpin RNA countered ZKSCAN3-augmented anchorage-independent colony formation. We also demonstrate vascular endothelial growth factor as a direct ZKSCAN3 target. Thus, ZKSCAN3 regulates the expression of several genes favoring tumor progression including integrin beta 4.


Assuntos
Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica , Integrina beta4/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Transplante de Neoplasias , Dedos de Zinco
18.
Cancer Cell ; 13(5): 385-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18455122

RESUMO

Expression of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase associated with cell proliferation and survival, is overactive in many tumors of epithelial origin. Blockade of the kinase activity of EGFR has been used for cancer therapy; however, by itself, it does not seem to reach maximum therapeutic efficacy. We report here that in human cancer cells, the function of kinase-independent EGFR is to prevent autophagic cell death by maintaining intracellular glucose level through interaction and stabilization of the sodium/glucose cotransporter 1 (SGLT1).


Assuntos
Receptores ErbB/fisiologia , Neoplasias/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Transportador 1 de Glucose-Sódio/fisiologia , Autofagia , Morte Celular , Divisão Celular , Sobrevivência Celular , Receptores ErbB/deficiência , Receptores ErbB/genética , Glucose/metabolismo , Homeostase , Humanos , Cinética , Metástase Neoplásica , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores
19.
Neoplasia ; 7(12): 1065-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16354589

RESUMO

Tumor cells and tumor-associated endothelial cells express activated epidermal growth factor receptor (EGFR) due to production of EGF-related ligands in the tumor microenvironment. To investigate the effect of perpetual EGFR activation on endothelial cells, we developed a novel method to generate constitutively active EGFR. We fused the entire intracellular domain of the EGFR to the N-terminus of the CD3zeta component of the T-cell receptor signaling complex. Expression of the chimeric receptor CD3-EGFR in EGFR-deficient human embryonic kidney cells resulted in ligand-independent sustained EGFR phosphorylation and in the induction of Akt, mitogen-activated protein kinase, and signal transducer and activator of transcription 3 (Stat3). Next, CD3-EGFR was stably expressed in murine brain endothelial cells where it signaled for the initiation of angiogenic programs, Stat3 activation, and continuous proliferation. A comparison between brain endothelial cells encoding CD3zeta and CD3-EGFR revealed that proangiogenic phenotype was modulated by the intracellular effector Stat3 and that suppression of this downstream target with the EGFR tyrosine kinase inhibitor PKI166 could revert this phenotype. Thus, our results validate the use of chimeric constitutively active receptors to replicate critical features observed in pathophysiological processes that can expedite the identification of novel therapeutic agents targeting EGFR activation and function.


Assuntos
Complexo CD3/metabolismo , Receptores ErbB/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Encéfalo/metabolismo , Complexo CD3/genética , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Rim/metabolismo , Ligantes , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA