Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404376

RESUMO

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

2.
Comput Struct Biotechnol J ; 21: 4540-4551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810279

RESUMO

Tumor mutation burden (TMB) has emerged as an essential biomarker for assessing the efficacy of cancer immunotherapy. However, due to the inherent complexity of tumors, TMB is not always correlated with the responsiveness of immune checkpoint inhibitors (ICIs). Thus, refining the interpretation and contextualization of TMB is a requisite for enhancing clinical outcomes. In this study, we conducted a comprehensive investigation of the relationship between TMB and multi-omics data across 33 human cancer types. Our analysis revealed distinct biological changes associated with varying TMB statuses in STAD, COAD, and UCEC. While multi-omics data offer an opportunity to dissect the intricacies of tumors, extracting meaningful biological insights from such massive information remains a formidable challenge. To address this, we developed and implemented the PGLCN, a biologically informed graph neural network based on pathway interaction information. This model facilitates the stratification of patients into subgroups with distinct TMB statuses and enables the evaluation of driver biological processes through enhanced interpretability. By integrating multi-omics data for TMB prediction, our PGLCN model outperformed previous traditional machine learning methodologies, demonstrating superior TMB status prediction accuracy (STAD AUC: 0.976 ± 0.007; COAD AUC: 0.994 ± 0.007; UCEC AUC: 0.947 ± 0.023) and enhanced interpretability (BA-House: 1.0; BA-Community: 0.999; BA-Grid: 0.994; Tree-Cycles: 0.917; Tree-Grids: 0.867). Furthermore, the biological interpretability inherent to PGLCN identified the Toll-like receptor family and DNA repair pathways as potential combined biomarkers in conjunction with TMB status in gastric cancer. This finding suggests a potential synergistic targeting strategy with immunotherapy for gastric cancer, thus advancing the field of precision oncology.

3.
Nat Commun ; 13(1): 2508, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523896

RESUMO

Plant essential oils (PEOs) are widely used in cosmetic and nutraceutical industries. The component ratios of PEOs determine their qualities. Controlling the component ratios is challenging in construction of PEO biotechnological platforms. Here, we explore the catalytic reaction pathways of both product-promiscuous and product-specific santalene synthases (i.e., SaSSy and SanSyn) by multiscale simulations. F441 of SanSyn is found as a key residue restricting the conformational dynamics of the intermediates, and thereby the direct deprotonation by the general base T298 dominantly produce α-santalene. The subsequent mutagenesis of this plastic residue leads to generation of a mutant enzyme SanSynF441V which can produce both α- and ß-santalenes. Through metabolic engineering efforts, the santalene/santalol titer reaches 704.2 mg/L and the component ratio well matches the ISO 3518:2002 standard. This study represents a paradigm of constructing biotechnological platforms of PEOs with desirable component ratios by the combination of metabolic and enzymatic engineering.


Assuntos
Sesquiterpenos , Engenharia Metabólica , Óleos de Plantas/química , Sesquiterpenos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(12): e2118709119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290128

RESUMO

Triterpenoids are biologically active metabolites synthesized from a common linear precursor catalyzed by 2,3-oxidosqualene cyclases (OSCs) to form diverse triterpenoid skeletons. OSCs corresponding to many discovered triterpene alcohols in nature have not been functionally and mechanistically characterized due to the diversity of chemical structures and complexity of the cyclization mechanism. We carried out a genome-wide investigation of OSCs from Avena strigosa and discovered two triterpene synthases, namely, AsHS1 and AsHS2, using a Nicotiana benthamiana expression system. These synthases produce hopenol B and hop-17(21)-en-3ß-ol, which are components of surface wax in oat panicles and sheathes, respectively. We demonstrated that substitutions of two to three amino acid residues in AsHS1 with corresponding residues from AsHS2 allowed it to be completely converted into a hop-17(21)-en-3ß-ol synthase. AsHS2 mutants with a substitution at site 410 could synthesize hopenol B alone or mixed with a side product isomotiol. The combined quantum mechanics and molecular mechanics calculation demonstrated that the side chain size of the residue at site 410 regulated the relative orientations between the hopyl C22 cation and Phe257, leading to a difference in deprotonation positions through providing or not providing cation­π interaction between the aromatic ring of F257 and the carbocation intermediate. A similar mechanism could be applied to a hopenol B synthase from a dicotyledonous plant Aquilegia. This study provided mechanistic insight into triterpenoid synthesis and discovered key amino acid residues acting on hydride transfer and a deprotonation site to differentiate between hopane-type scaffolds in diverse plant species.


Assuntos
Transferases Intramoleculares , Triterpenos , Avena/genética , Transferases Intramoleculares/genética , Plantas
5.
Eur J Med Chem ; 221: 113525, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000483

RESUMO

STAT3 has been validated as an attractive anticancer target due to its important roles in cancer initiation and progression. However, discovery of potent and selective STAT3 small-molecule inhibitors with druglike properties is still challenging. In this study, two series of substituted 2-phenylquinolines and 2-arylimidazo[1,2-a]pyridines were designed through structure-based drug discovery approach by condensing the privileged structures of STX-119 and SH4-54. Our study has resulted in the discovery of a number of highly potent and selective STAT3 inhibitors, exemplified by compound 39 with the privileged structure of 2-phenylimidazo[1,2-a]pyridine, which selectively inhibits phosphorylation of STAT3 and suppresses subsequent signaling pathway. Moreover, 39 inhibits cell growth, migration and invasion of human triple negative breast cancer (TNBC) cells lines. Consistently, it achieves significant and dose-dependent tumor growth inhibition in both cell line-derived and patient-derived xenograft tumor models in mice. These results clearly indicate that 39 is a highly potent and selective STAT3 inhibitor.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Phys Chem Chem Phys ; 22(3): 1276-1287, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31850422

RESUMO

Recent clinical data has shown that some cancers choose to express PDL2 compared to PDL1. Therefore, a detailed and comparative study of the dynamic binding mechanism between PD1/PDL1 and PD1/PDL2 can guide drug design towards PD1. Herein, long time-scale classical molecular dynamics simulation, binding free energy calculation, energy decomposition and homology modeling for PD1/PDL2 were used to shed light on the differences in the binding mechanisms of the PD1/PDL1 and PD1/PDL2 complexes. On one hand, our results reveal a different binding mechanism of PD1 binding to PDL1 and PDL2, which is mainly attributed to the induced-fit from different proteins, that is, the C'D loop of PD1 is essential for PD1/PDL1, while the CD loop of PDL2 is critical for PD1/PDL2. Particularly, the "enclosed" conformation of PDL2 leads to a higher affinity between PD1-PDL2 in comparison to the affinity between PD1-PDL1. For PD1/PDL1, the key residues of N66, Y68, Q75, T76, K78, D85, I126, L128, A132, I134 and E136 are the dominant residues for stabilizing the protein-protein interaction (PPI). For PD1/PDL2, the key residues are mainly concentrated in the FG loop, including N33/Q75/L128/A132/Q133/I134/K135. These findings provide a comprehensive understanding of the distinctive binding kinetics and thermodynamic features, which will contribute meaningfully for the design of peptides and small molecule inhibitors to selectively break the PPI interfaces of PD1/PDL1 and PD1/PDL2.


Assuntos
Antígeno B7-H1/metabolismo , Simulação de Dinâmica Molecular , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/química , Proteína 2 Ligante de Morte Celular Programada 1/química , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
7.
J Med Chem ; 62(15): 7302-7308, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31298540

RESUMO

Tertiary EGFRC797S mutation induced resistance against osimertinib (1) is an emerging "unmet clinical need" for non-small-cell lung cancer (NSCLC) patients. A series of 5-methylpyrimidopyridone derivatives were designed and synthesized as new selective EGFRL858R/T790M/C797S inhibitors. A representative compound, 8r-B, exhibited an IC50 of 27.5 nM against the EGFRL858R/T790M/C797S mutant, while being a significantly less potent for EGFRWT (IC50 > 1.0 µM). Cocrystallographic structure determination and computational investigation were conducted to elucidate its target selectivity.


Assuntos
Desenho de Fármacos , Mutação/fisiologia , Piridonas/síntese química , Cristalografia por Raios X/métodos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Mutação/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Piridonas/farmacologia , Relação Estrutura-Atividade
8.
Anal Chem ; 91(3): 2480-2487, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30618242

RESUMO

The specific sensing of an exact G-quadruplex structure by small molecules has never been reported. A fluorescent sensor based on the photoinduced electron transfer (PeT) mechanism provides possibilities for such specific, one-to-one recognition, indicated by fluorescence. We have rationally developed a PeT fluorescent sensor IZFL-2 by linking triarylimidazole and fluorescein moieties. IZFL-2 is a distinctive, smart sensor whose fluorescence is tunable by its molecular conformations. We then applied IZFL-2 to sensing G-quadruplexes and found that it could exactly distinguish the wild-type c-MYC G-quadruplex from other types of G-quadruplexes, as shown by the activation of its fluorescence. To understand this behavior, we performed various experiments, including fluorescence assays, absorption assays, and multiscale molecular dynamics simulations, to thoroughly investigate the optimal binding mode of IZFL-2 in the c-MYC G-quadruplex. Then, the corresponding HOMO-LUMO of IZFL-2 was analyzed, and the results demonstrated that the PeT process of IZFL-2 is suppressed only in the wild-type c-MYC G-quadruplex via specific loop interactions, which restores its fluorescence. To our knowledge, this smart molecule provides the first example of and new insights into the development of sensors specific for a particular G-quadruplex structure by utilizing intramolecular PeT-controlled fluorescence switching.


Assuntos
Corantes Fluorescentes/química , Quadruplex G , Proteínas Proto-Oncogênicas c-myc/genética , Sequência de Bases , Transporte de Elétrons , Simulação de Dinâmica Molecular , Mutação
9.
Eur J Med Chem ; 157: 1361-1375, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196060

RESUMO

Aurora kinases play critical roles in the regulation of the cell cycle and mitotic spindle assembly. Aurora A kinase, a member of the Aurora protein family, is frequently highly expressed in tumors, and selective Aurora A inhibition serves as a significant component of anticancer therapy. However, designing highly selective Aurora A inhibitors is difficult because Aurora A and B share high homology and differ only by three residues in their ATP-binding pockets. Through structure-based drug design, we designed and synthesized a series of novel quinazolin-4-amine derivatives. These derivatives act as selective Aurora A kinase inhibitors by exploiting the structural differences between Aurora A and B. The selectivities of most compounds were improved (the best up to >757-fold) when comparing with the lead compound (3-fold). In vitro biochemical and cellular assays revealed that compound 6 potently inhibited Aurora A kinase and most human tumor cells. Furthermore, compound 6 effectively suppressed carcinoma, such as triple-negative breast cancers (TNBC) in an animal model. Therefore, compound 6 might serve as a promising anticancer drug. Moreover, through molecular dynamic (MD) analysis, we have identified that a salt bridge formed in Aurora B is key contributor for the isoform selectivity of the inhibitor. This salt bridge has not been previously detected in the reported crystal structure of Aurora B. These results might provide a crucial basis for the further development of highly potent inhibitors with high selectivity for Aurora A.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Aurora Quinase A/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
10.
Chem Commun (Camb) ; 53(52): 7007-7010, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28580476

RESUMO

A square-planar nickel(ii) dithiolate complex is an active molecular catalyst for both photoreduction of protons from water with a turnover number (>1500) and electroreduction of protons from weakly acidic solutions with remarkable turnover frequencies (5575 s-1 at -1.92 V and 1441 s-1 at -1.61 V vs. SCE). DFT calculations provide in-depth insight into the catalytic cycle of the electrochemical reaction, suggesting that the sulfur atoms play crucial roles in proton exchange and hydrogen formation.

11.
Phys Chem Chem Phys ; 18(31): 21246-50, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27426006

RESUMO

Histone Deacetylases (HDACs) are promising anticancer targets and several selective inhibitors have been created based on the architectural differences of foot-pockets among HDACs. However, the "gate-keeper" of foot-pockets is still controversial. Herein, it is for the first time revealed that a conserved R-E salt bridge plays a critical role in keeping foot-pockets closed in class-II HDACs by computational simulations. This finding is further substantiated by our mutagenesis experiments.

12.
J Chem Inf Model ; 56(5): 877-85, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27082764

RESUMO

The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Simulação de Dinâmica Molecular , Nicotiana/enzimologia , Biocatálise , Ciclização , Domínios Proteicos
13.
J Chem Theory Comput ; 11(7): 3180-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575755

RESUMO

A full enzymatic catalysis cycle in the inosine-adenosine-guanosine specific nucleoside hydrolase (IAG-NH) was assumed to be comprised of four steps: substrate binding, chemical reaction, base release, and ribose release. Nevertheless, the mechanistic details for the rate-limiting step of the entire enzymatic reaction are still unknown, even though the ribose release was likely to be the most difficult stage. Based on state-of-the-art quantum mechanics and molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the ribose release process can be divided into two steps: "ribose dissociation" and "ribose release". The "ribose dissociation" includes "cleavage" and "exchange" stages, in which a metastable 6-fold intermediate will recover to an 8-fold coordination shell of Ca(2+) as observed in apo- IAG-NH. Extensive random acceleration molecular dynamics and MD simulations have been employed to verify plausible release channels, and the estimated barrier for the rate-determining step of the entire reaction is 13.0 kcal/mol, which is comparable to the experimental value of 16.7 kcal/mol. Moreover, the gating mechanism arising from loop1 and loop2, as well as key residues around the active pocket, has been found to play an important role in manipulating the ribose release.


Assuntos
Simulação de Dinâmica Molecular , N-Glicosil Hidrolases/química , Teoria Quântica , Cálcio/química , Cálcio/metabolismo , Cinética , Modelos Moleculares , Conformação Molecular , N-Glicosil Hidrolases/metabolismo
14.
Phys Chem Chem Phys ; 17(44): 29483-8, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26497064

RESUMO

SAHA (vorinostat, Merck) is a famous clinical drug for zinc-containing histone deacetylase (HDAC) targets against cancer and several other human disorders, whose inhibition mechanism (namely the protonation mechanism) upon binding to HDAC has been debated for more than ten years. It is very challenging to verify experimentally and is still controversial theoretically. The popular "Class-dependent" (namely "Tyr-dependent") hypothesis is that the deprotonation of SAHA is mostly regulated by the conserved Tyr308 in class I HDAC while it is replaced by the His843 in class IIa HDAC. Herein, by elaborate QM(DFT)/MM MD simulations, we exclude the prevalent "Class-dependent" mechanism and advance a novel "Metal-dependent" mechanism, where the remote second metal site (K(+) in most HDAC and Ca(2+) in HDAC2) determines the protonation of SAHA. This proof-of-principle "Metal-dependent" mechanism opens up a new avenue to utilize the second metal site for isoform-selective inhibitor design.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Vorinostat
15.
J Comput Chem ; 36(30): 2228-35, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26452222

RESUMO

Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs.


Assuntos
Depsipeptídeos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Simulação de Dinâmica Molecular , Teoria Quântica , Compostos de Sulfidrila/farmacologia , Depsipeptídeos/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Compostos de Sulfidrila/química , Vorinostat , Zinco/química , Zinco/metabolismo
16.
Molecules ; 19(6): 8544-55, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24959681

RESUMO

Four new polyphenols, loddigesiinols G-J (compounds 1-4) and a known compound, crepidatuol B (5), were isolated from the stems of Dendrobium loddigesii that have long been used in Traditional Chinese Medicine and have recently been used to treat type 2 diabetes. Compounds 1-5 structures were elucidated based on spectroscopic analysis. The absolute configurations of compounds 1-4 were determined using theoretical calculations of electronic circular dichroism (ECD), and the absolute configuration of compound 5 was determined by a comparison of the experimental ECD spectra and the literature data. Compounds 1-5 are strong inhibitors of α-glucosidase, with IC50 values of 16.7, 10.9, 2.7, 3.2, and 18.9 µM, respectively. Their activities were significantly stronger than trans-resveratrol as a positive control (IC50 values of 27.9 µM).


Assuntos
Dendrobium/metabolismo , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Fenantrenos/isolamento & purificação , Polifenóis/isolamento & purificação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Medicina Tradicional Chinesa , Estrutura Molecular , Fenantrenos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Caules de Planta/metabolismo , Polifenóis/química , alfa-Glucosidases/química
17.
Org Biomol Chem ; 12(27): 4941-51, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24879560

RESUMO

In the present study, we found that three enzymes, MVK, MDD and FPPS, in the mevalonate pathway (MVP) of cholesterol biosynthesis, can be simultaneously inhibited by two green tea polyphenols ((-)-epicatechin-3-gallate, ECG; (-)-epigallocatechin-3-gallate, EGCG). Molecular dynamics simulations and pharmacophore studies were carried out to elucidate the tri-targeted inhibition mechanisms. Our results indicate that similar triangular binding pockets exist in all three enzymes, which is essential for their binding with polyphenols. Two distinct binding poses for ECG and EGCG were observed in our MD simulations. These results shed light on the potential for further selective and multi-targeted inhibitor design for the treatment of hyperlipidemia.


Assuntos
Catequina/análogos & derivados , Colesterol/biossíntese , Inibidores Enzimáticos/farmacologia , Chá , Animais , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Catequina/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ratos
18.
Dalton Trans ; 43(22): 8499-507, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756338

RESUMO

A simple 4-aniline boron-dipyrromethene (BODIPY) dye (1) was developed as a highly sensitive acidic pH fluorescent probe excitable with visible light based on a photoinduced electron transfer (PeT) mechanism. The pH titration indicates that the fluorescence intensity increases more than 500-fold within the pH range of 4.12-1.42 with a pKa value of 3.24 in methanol-water (1 : 1, v/v) solution, which is valuable for studying strongly acidic conditions. Density functional theory (DFT) calculations reproduce the fluorescence off-on behavior. 1 has also been used as a fluorescent chemosensor for the visual detection of dissolved carbon dioxide (CO2) gas. The underlying mechanism of the sensing process is rationalized. This probe can be recovered by bubbling nitrogen (N2) gas into CO2-treated solutions for over 10 cycles. In addition, two logic gates (OR and INH) have been achieved at the molecular level by changing the initial states of system 1 and chemical inputs.


Assuntos
Compostos de Anilina/química , Compostos de Boro/química , Dióxido de Carbono/análise , Corantes Fluorescentes/síntese química , Cristalografia por Raios X , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
19.
Biochim Biophys Acta ; 1834(6): 1117-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23415724

RESUMO

Although various Trypanosoma vivax purine-specific inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH) crystal structures have been determined and the chemical reaction mechanism of substrate hydrolysis has been studied recently, the mechanistic details for the release of base and ribose are still unclear. Herein molecular dynamics (MD) simulations combined with umbrella sampling technique were utilized to explore the regulation mechanisms of key residues and loops 1 and 2 for the base release. Our results have indicated that the base release process is not the rate-limiting step in the entire hydrolysis process, and the very low barrier of ~5.6kcal/mol can be washed out easily by the notable exothermicity from the substrate hydrolysis step. Moreover, the MD simulations have revealed that Glu82/Trp83 in loop 1 and His247/Arg252 in loop 2 are important to modulate the base release. The partial helix-to-coil change of loop 2 along with the base release process has been observed, showing good agreement with the IAG-NH crystal structures. The local binding site around the ribose after the base release is also discussed.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Purinas/química , Purinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Especificidade por Substrato , Termodinâmica , Trypanosoma vivax/metabolismo
20.
J Phys Chem B ; 116(6): 1984-91, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22257300

RESUMO

Although various T. vivax purine-specific inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH) crystal structures were determined in recent years, the mechanistic details for the cleavage of N-glycosidic bond and the release of base are still unclear. Herein, the irreversible hydrolysis reaction has been studied by ab initio QM/MM MD simulations, and the results indicate a highly dissociative and concerted mechanism. The protonation of substrate at N7 of inosine is found to strongly facilitate the hydrolysis process, while the hydrolysis reaction is less sensitive to the protonation state of Asp 40 residue. The proton-transfer channel and the dependence of activity on the anti/syn-conformation of substrate are also explored.


Assuntos
Simulação de Dinâmica Molecular , N-Glicosil Hidrolases/química , Teoria Quântica , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Hidrólise , Cinética , N-Glicosil Hidrolases/metabolismo , Especificidade por Substrato , Termodinâmica , Trypanosoma vivax/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA