Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Acta Pharm Sin B ; 14(1): 223-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261805

RESUMO

Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.

2.
Acta Pharm Sin B ; 13(8): 3382-3399, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37655321

RESUMO

Radiotherapy is widely used in the management of advanced colorectal cancer (CRC). However, the clinical efficacy is limited by the safe irradiated dose. Sensitizing tumor cells to radiotherapy via interrupting DNA repair is a promising approach to conquering the limitation. The BRCA1-BARD1 complex has been demonstrated to play a critical role in homologous recombination (HR) DSB repair, and its functions may be affected by HERC2 or BAP1. Accumulated evidence illustrates that the ubiquitination-deubiquitination balance is involved in these processes; however, the precise mechanism for the cross-talk among these proteins in HR repair following radiation hasn't been defined. Through activity-based profiling, we identified PT33 as an active entity for HR repair suppression. Subsequently, we revealed that BAP1 serves as a novel molecular target of PT33 via a CRISPR-based deubiquitinase screen. Mechanistically, pharmacological covalent inhibition of BAP1 with PT33 recruits HERC2 to compete with BARD1 for BRCA1 interaction, interrupting HR repair. Consequently, PT33 treatment can substantially enhance the sensitivity of CRC cells to radiotherapy in vitro and in vivo. Overall, these findings provide a mechanistic basis for PT33-induced HR suppression and may guide an effective strategy to improve therapeutic gain.

3.
Cell Oncol (Dordr) ; 45(6): 1347-1361, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205846

RESUMO

PURPOSE: The adaptive immune responses induced by radiotherapy has been demonstrated to largely rely on STING-dependent type I interferons (IFNs) production. However, irradiated tumor cells often fail to induce dendritic cells (DCs) to produce type I IFNs. Hence, we aim to uncover the limitation of STING-mediated innate immune sensing following radiation, and identify efficient reagents capable to rescue the failure of type I IFNs induction for facilitating radiotherapy. METHODS: A targeted cell-based phenotypic screening was performed to search for active molecules that could elevate the production of type I IFNs. USP14 knockout or inhibition was assayed for IFN production and the activation of STING signaling in vitro. The mechanisms of USP14 were investigated by western blot and co-immunoprecipitation in vitro. Additionally, combinational treatments with PT33 and radiation in vivo and in vitro models were performed to evaluate type I IFNs responses to radiation. RESULTS: PT33 was identified as an enhancer of STING agonist elicited type I IFNs production to generate an elevated and durable STING activation profile in vitro. Mechanistically, USP14 inhibition or deletion impairs the deubiquitylation of K63-linked IRF3. Furthermore, blockade of USP14 with PT33 enhances DC sensing of irradiated-tumor cells in vitro, and synergizes with radiation to promote systemic antitumor immunity in vivo. CONCLUSION: Our findings reveal that USP14 is one of the major IFN production suppressors and impairs the activation of IRF3 by removing the K63-linked ubiquitination of IRF3. Therefore, blockage of USP14 results in the gain of STING signaling activation and radiation-induced adaptive immune responses.


Assuntos
Imunidade Adaptativa , Interferon Tipo I , Interferon beta , Radioterapia , Ubiquitina Tiolesterase , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
4.
Sci Total Environ ; 837: 155685, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523338

RESUMO

Developmental arsenic exposure increases cancer risk in later life with the mechanism elusive. Oxidative stress is a dominant determinant in arsenic toxicity. However, the role of Nrf2, a key regulator in antioxidative response, in tumor-augmenting effects by developmental arsenic exposure is unclear. In the present study, wild-type C57BL/6J and Nrf2-konckout (Nrf2-KO) were developmentally exposed to inorganic arsenic via drinking water. For hepatic tumorigenesis analysis, mice were intraperitoneally injected with diethylnitrosamine (DEN) at two weeks of age. Developmental arsenic exposure aggravated tumor multiplicity and burden, and expression of PCNA and AFP in hepatic tumors induced by DEN. Nrf2 activation as indicated by over-expression of Nrf2 and its downstream genes, including Gss, Gsr, p62, Gclc and Gclm, was found in liver tumors, as well as in the livers in developmentally arsenic-exposed pups at weaning. Notably, Nrf2 deficiency attenuated tumor-augmenting effects and over-expression of Nrf2 downstream genes due to developmental arsenic exposure. Furthermore, the levels of urinary DEN metabolite (acetaldehyde) and hepatic DNA damage markers (O6-ethyl-2-deoxyguanosine adducts and γ-histone H2AX) after DEN treatment were elevated by Nrf2 agonist, 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide. Collectively, our data suggest that augmentation of DEN-induced hepatic tumorigenesis by developmental arsenic exposure is dependent on Nrf2 activation, which may be related to the role of Nrf2 in DEN metabolic activation. Our findings reveal, at least in part, the mechanism underlying increased susceptibility to developing cancer due to developmental arsenic exposure.


Assuntos
Arsênio , Neoplasias Hepáticas Experimentais , Fator 2 Relacionado a NF-E2 , Animais , Arsênio/toxicidade , Carcinogênese/induzido quimicamente , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
5.
Biochem Pharmacol ; 174: 113846, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032580

RESUMO

Nuclear factor-E2-related factor 2 (Nrf2) is a master transcription factor in antioxidant response, protecting against oxidative damage and various diseases. Previous studies suggest that Nrf2 is suppressed in fibrotic skin and Nrf2 agonists represent a therapeutic strategy, which is mainly attributed to Nrf2 function in fibroblasts. However, constitutive activation of Nrf2 may endow cells with proliferation and survival advantage, facilitating skin tumorigenesis. Non-invasive and mild modulation of Nrf2 via topical application may be helpful. Keratinocytes, which are essential for epidermal formation and function maintenance, have been shown to modulate differentiation of fibroblasts in different stages of fibrosis. In this respect, the role of Nrf2 in keratinocytes in skin fibrosis remains elusive. In the present study, bleomycin (BLM)-induced skin fibrosis model was applied to keratinocyte-specific Nrf2 knockout (Nrf2(K)-KO) mice generated with Keratin 14-Cre/loxp system. BLM treatment significantly suppressed Nrf2 expression in the epidermis. Nrf2 deficiency in keratinocytes exacerbated BLM-induced skin fibrosis according to dermal thickness, and immunostaining of collagen and α-SMA. One-dose BLM treatment led to the emergence of apoptotic cells in the epidermis and an elevated number of macrophages and neutrophils in the dermis, which was aggravated by Nrf2 deficiency, as indicated by TUNEL staining, and expression of F4/80 and Ly6G. In line with in vivo evidence, NRF2 silencing in HaCaT cells significantly decreased cell survival rate in response to BLM due to suppressed expression of antioxidative genes and increased intracellular levels of reactive oxygen species (ROS). The mRNA levels of chemokines and cytokines that are capable of recruiting macrophages and neutrophils, including Mcp-1, Il-6 and Il-8, were increased by Nrf2 deficiency in primary mouse keratinocytes. Moreover, bardoxolone methyl (CDDO-Me), a potent Nrf2 activator, ameliorated BLM-induced skin fibrosis after topical administration. These findings indicate that Nrf2 in keratinocytes protects against skin fibrosis via regulating cell resistance to apoptosis and expression of cytokines and chemokines. The restoration of Nrf2 through topical application might be a potential pharmacologic approach to combat skin fibrosis.


Assuntos
Epiderme/metabolismo , Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Animais , Linhagem Celular , Epiderme/patologia , Fibrose/metabolismo , Fibrose/patologia , Fibrose/prevenção & controle , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Biomolecules ; 10(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033297

RESUMO

Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.


Assuntos
Intoxicação por Arsênico , Arsênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células , Epigênese Genética , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases , Camundongos , MicroRNAs/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Fator de Transcrição AP-1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tirosina/metabolismo
7.
Stem Cells Int ; 2018: 6704583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760732

RESUMO

In vitro culture of mesenchymal stem cells (MSCs) from mouse bone marrow (BM) has been hampered because of the low yield of MSCs during isolation and the contamination of hematopoietic cells during expansion. The lack of specific mouse BM-MSC markers increases the difficulty. Several techniques have been reported to improve the purity and in vitro growth of mouse BM-MSCs. However, systematic report on comparison of characteristics in primary BM-MSCs between different culture conditions is rare. Here, we studied the effects of oxygen concentrations and initial medium replacement intervals, along with cell passages, on mouse BM-MSCs isolated with differential adhesion method. BM-MSCs exhibited elevated proliferative and clonogenic abilities in 5% oxygen compared with 10% and 21% oxygen, as well as a better expression of the MSC marker Sca-1. Adipogenic and osteogenetic differentiation of BM-MSCs can be observed in both 21% and 5% oxygen. Adipogenic differentiation appeared stronger under normoxia conditions. BM-MSCs showed increased proliferative capacity and adipogenic/osteogenetic differentiation potential when initial medium replacement interval was 4 days compared with 1 day. As passage number increased, cells were more MSC-like in morphology and in expression of surface markers (positive for CD29, CD44, and Sca-1 and negative for CD11b, CD19, and CD45). These data provide new insight into optimizing the culture method and understanding the biological characteristics of mouse BM-MSCs during in vitro expansion.

8.
Sci Rep ; 7: 44424, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303940

RESUMO

Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.


Assuntos
Intoxicação por Arsênico/sangue , Arsenitos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos de Sódio/toxicidade , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Animais , Intoxicação por Arsênico/patologia , Intoxicação por Arsênico/urina , Arsenitos/farmacocinética , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Biotransformação , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos de Sódio/farmacocinética , Especificidade da Espécie , Transcrição Gênica
9.
Sci Rep ; 6: 26174, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193069

RESUMO

Changes in profile of lipids and adipokines have been reported in patients with thyroid dysfunction. But the evidence is controversial. The present study aimed to explore the relationships between thyroid function and the profile of lipids and adipokines. A cross-sectional study was conducted in 197 newly diagnosed hypothyroid patients, 230 newly diagnosed hyperthyroid patients and 355 control subjects. Hypothyroid patients presented with significantly higher serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDLC), fasting insulin, resistin and leptin than control (p < 0.05). Hyperthyroid patients presented with significantly lower serum levels of high-density lipoprotein cholesterol, LDLC and leptin, as well as higher levels of fasting insulin, resistin, adiponectin and homeostasis model insulin resistance index (HOMA-IR) than control (p < 0.05). Nonlinear regression and multivariable linear regression models all showed significant associations of resistin or adiponectin with free thyroxine and association of leptin with thyroid-stimulating hormone (p < 0.001). Furthermore, significant correlation between resistin and HOMA-IR was observed in the patients (p < 0.001). Thus, thyroid dysfunction affects the profile of lipids and adipokines. Resistin may serve as a link between thyroid dysfunction and insulin resistance.


Assuntos
Adipocinas/sangue , Hipertireoidismo/patologia , Hipotireoidismo/patologia , Lipídeos/sangue , Resistina/metabolismo , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Soro/química , Tireotropina/sangue , Tiroxina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA