Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Brain Res ; 1839: 149008, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761846

RESUMO

A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 µM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.


Assuntos
Capsaicina , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/efeitos dos fármacos , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Animais , Ratos , Linhagem Celular Tumoral , Técnicas de Patch-Clamp , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Potenciais de Ação/efeitos dos fármacos
2.
J Clin Ultrasound ; 52(5): 566-574, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538081

RESUMO

PURPOSE: To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS: This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS: A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS: Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.


Assuntos
Neoplasias da Mama , Gradação de Tumores , Neoplasia Residual , Nomogramas , Ultrassonografia Mamária , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Ultrassonografia Mamária/métodos , Adulto , Neoplasia Residual/diagnóstico por imagem , Valor Preditivo dos Testes , Idoso , Terapia Neoadjuvante , Mama/diagnóstico por imagem , Carga Tumoral , Radiômica
3.
Eur J Pharmacol ; 971: 176518, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556119

RESUMO

XAV-939(XAV) is a chemical compound that inhibits the activity of tankyrase. However, the precise way in which XAV alters membrane ionic currents is not well understood. In this study,our goal was to examine the impact of XAV on the ionic currents in mouse MA-10 Leydig cells, specifically focusing on the magnitude, gating properties,and voltage-dependent hysteresis of erg-mediated K+currents(IK(erg)). In our whole-cell current recordings we observed that the addition of XAV inhibited the density of IK(erg) in a concentration-dependent manner with an IC50 of 3.1 µM. Furthermore we found that continued exposure to XAV, further addition of neither liraglutide nor insulin-like growth factor-1 counteracted XAV-mediated inhibition of IK(erg). Additionally the presence of XAV suppressed the mean current versus voltage relationship of IK(erg) across the entire voltage-clamp step analyzed. This compound shifted the steady-state activation curve of IK(erg) to a less negative potential by approximately 12 mV. The presence of XAV increased the time constant of deactivating IK(erg) in MA-10 cells. The voltage-dependent clockwise hysteresis of IK(erg) responding to prolonged upright isosceles-triangular ramp voltage became diminished by adding XAV; moreover subsequent addition of NS3623 effectively reversed XAV-induced decrease of hysteretic area of IK(erg). XAV also inhibited the proliferation of this cell line and the IC50 value of XAV-induced inhibition of cell proliferation was 2.8M. Overall the suppression of IK(erg) by XAV may serve as a significant ionic mechanism that contribute to the functional properties of MA-10 cells. However, it is important to note that this effect cannot be attributed solely to the inhibition of tankyrase.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Neoplasias , Tanquirases , Camundongos , Masculino , Animais , Linhagem Celular
4.
Neuroscience ; 531: 12-23, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661016

RESUMO

Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. The whole-cell clamp recordings were applied to evaluate the ionic currents and action potentials of cells. Here, we have demonstrated that FLV can effectively inhibit the amplitude of erg-mediated K+ current (IK(erg)) in pituitary tumor (GH3) cells, with an IC50 of approximately 3.2 µM. In the presence of FLV, the midpoint in the activation curve of IK(erg) was distinctly shifted to a less negative potential by 10 mV, with minimal modification of the gating charge. However, the magnitude of hyperpolarization-activated cation current (Ih) elicited by long-lasting membrane hyperpolarization was progressively decreased, with an IC50 value of 8.7 µM, upon exposure to FLV. More interestingly, we also found that FLV (5 µM) could regulate the action potential and afterhyperpolarization properties in primary embryonic mouse cortical neurons. Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.


Assuntos
Neurônios , Hipófise , Camundongos , Animais , Fluvastatina , Neurônios/fisiologia , Cátions , Colesterol
6.
Ann Hematol ; 102(11): 3177-3184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460606

RESUMO

Cytopenia due to the abnormal regulation of GATA1 could manifest as varying degrees of thrombocytopenia and/or anemia and more severely in male children than in female children. Here, we describe the case of pancytopenic and transfusion-dependent twin brothers at our center whose bone marrow puncture revealed low bone marrow hyperplasia. Whole-exome sequencing revealed that the twins had a new germline GATA1 mutation (nm_002049: exon 3:c.515 T >C:p.F172S), which confirmed the diagnosis of GATA1 mutation-related pancytopenia. The mutation was inherited from their mother, who was heterozygous for the mutation. Sanger sequencing verified the pathogenicity of the mutation. Further family morbidity survey confirmed that GATA1 mutation-related pancytopenia is an X-linked recessive genetic disorder. We developed haploid hematopoietic stem cell transplantation programs for twins, with the father as the only donor, and finally, the hematopoietic reconstruction was successful. Although they experienced acute graft-versus-host disease, hemorrhagic cystitis, and a viral infection in the early stage, no abnormal manifestations or transplant-related complications were observed 3 months after transplantation. Through hematopoietic stem cell transplantation technology for one donor and two receptors, we eventually cured the twins. The p.F172S variant in the new germline GATA1 mutation may play an essential role in the pathogenesis of GATA1 mutation-related cytopenia.


Assuntos
Anemia , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pancitopenia , Trombocitopenia , Criança , Humanos , Masculino , Fator de Transcrição GATA1/genética , Mutação , Pancitopenia/genética , Irmãos , Trombocitopenia/genética
7.
Biomedicines ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37239022

RESUMO

Omecamtiv mecarbil (OM, CK-1827452) is recognized as an activator of myosin and has been demonstrated to be beneficial for the treatment of systolic heart failure. However, the mechanisms by which this compound interacts with ionic currents in electrically excitable cells remain largely unknown. The objective of this study was to investigate the effects of OM on ionic currents in GH3 pituitary cells and Neuro-2a neuroblastoma cells. In GH3 cells, whole-cell current recordings showed that the addition of OM had different potencies in stimulating the transient (INa(T)) and late components (INa(L)) of the voltage-gated Na+ current (INa) with different potencies in GH3 cells. The EC50 value required to observe the stimulatory effect of this compound on INa(T) or INa(L) in GH3 cells was found to be 15.8 and 2.3 µM, respectively. Exposure to OM did not affect the current versus voltage relationship of INa(T). However, the steady-state inactivation curve of the current was observed to shift towards a depolarized potential of approximately 11 mV, with no changes in the slope factor of the curve. The addition of OM resulted in an increase in the decaying time constant during the cumulative inhibition of INa(T) in response to pulse-train depolarizing stimuli. Furthermore, the presence of OM led to a shortening of the recovery time constant in the slow inactivation of INa(T). Adding OM also resulted in an augmentation of the strength of the window Na+ current, which was evoked by a short ascending ramp voltage. However, the OM exposure had little to no effect on the magnitude of L-type Ca2+ currents in GH3 cells. On the other hand, the delayed-rectifier K+ currents in GH3 cells were observed to be mildly suppressed in its presence. Neuro-2a cells also showed a susceptibility to the differential stimulation of INa(T) or INa(L) upon the addition of OM. Molecular analysis revealed potential interactions between the OM molecule and hNaV1.7 channels. Overall, the direct stimulation of INa(T) and INa(L) by OM is assumed to not be mediated by an interaction with myosin, and this has potential implications for its pharmacological or therapeutic actions occurring in vivo.

8.
J Cardiovasc Pharmacol ; 81(2): 104-113, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607614

RESUMO

ABSTRACT: Dexmedetomidine, an alpha-2 adrenoreceptor agonist that is widely used as a sedative medication, is becoming more and more attractive in clinical application on cardiac surgery patients. In this review, we aim to summarize and discuss both retrospective studies and clinical trials regarding the effect of dexmedetomidine on patients who underwent cardiac surgery (including coronary artery bypass grafting, valve surgery, aortic surgery, percutaneous coronary intervention, and so on), which illustrates that the clinical effects of dexmedetomidine could effectively reduce mortality, major complications, and the intensive care unit and hospital length of stay without comprising safety. In addition, inconsistent results from both retrospective studies and clinical trials have also been demonstrated. Although the effectiveness and safety of dexmedetomidine on cardiac surgery patients is suggested, high-quality clinical trials are needed for further verification.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Dexmedetomidina , Humanos , Dexmedetomidina/efeitos adversos , Estudos Retrospectivos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hipnóticos e Sedativos , Ponte de Artéria Coronária
9.
Biomed Pharmacother ; 157: 113962, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370523

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) patients suffer varying degrees of heart dysfunction after tyrosine kinase inhibitor (TKI) treatment. Interestingly, HCC patients often have higher levels of pentraxin 3 (PTX3), and PTX3 inhibition was found to improve left ventricular dysfunction in animal models. OBJECTIVES: We sought to assess the therapeutic potential of PTX3 inhibition on TKI-associated cardiotoxicity. METHODS: We used a human embryonic stem cell line, RUES2, to generate cardiomyocyte cultures (RUES2-CM) for functional testing. We also assessed heart function and PTX3 expression levels in 16 HCC patients who received TKI treatment, 3 HCC patients who did not receive TKIs, and 7 healthy volunteers. RESULTS: Significantly higher PTX3 expression was noted in HCC patients with TKI treatment versus those without, and 38% of male and 33% of female patients had QTc prolongation after TKI treatment. Treatment of cardiomyocyte cultures with sorafenib also increased PTX3 expression and induced cytoskeletal remodelling, contraction reduction, sodium current inhibition, and mitochondrial respiratory dysfunction. PTX3 colocalised with CD44 in cardiomyocytes, and cardiomyocyte contraction, mitochondrial respiratory function, and regular cytoskeletal and apoptotic protein expression were restored with PTX3 inhibition. CD44 knockdown confirmed PTX3/CD44 signalling. These results suggest a possible mechanism in which sorafenib treatment increases PTX3 expression, thereby resulting in reduced extracellular signal-regulated kinase (ERK) 1/2 expression that affects cardiomyocyte contraction, while also activating c-Jun N-terminal kinase (JNK) downstream pathways to disrupt mitochondrial respiration and trigger apoptosis. CONCLUSIONS: TKI-induced cardiotoxicity may be partly mediated by the upregulation of PTX3, and thus PTX3 inhibition has potential as a therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteína C-Reativa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Cardiotoxicidade , Mitocôndrias/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499059

RESUMO

Deltamethrin (DLT) is a type-II pyrethroid ester insecticide used in agricultural and domestic applications as well as in public health. However, transmembrane ionic channels perturbed by this compound remain largely unclear, although the agent is thought to alter the gating characteristics of voltage-gated Na+ (NaV) channel current. In this study, we reappraised whether and how it and other related compounds can make any further modifications on voltage-gated Na+ current (INa) in pituitary tumor (GH3) cells. Cell exposure to DLT produced a differential and dose-dependent stimulation of peak (transient, INa(T)) or sustained (late, INa(L)) INa; consequently, the EC50 value required for DLT-stimulated INa(T) or INa(L) was determined to be 11.2 or 2.5 µM, respectively. However, neither the fast nor slow component in the inactivation time constant of INa(T) activated by short depolarizing pulse was changed with the DLT presence; conversely, tefluthrin (Tef), a type-I pyrethroid insecticide, can accentuate INa with a slowing in inactivation time course of the current. The INa(L) augmented by DLT was attenuated by further application of either dapagliflozin (Dapa) or amiloride, but not by chlorotoxin. During pulse train (PT) stimulation, with the Tef or DLT presence, the cumulative inhibition of INa(T) became slowed; moreover, following PT stimuli, a large tail current with a slowly recovering process was observed. Alternatively, during rapid depolarizing pulse, the amplitude of INa(L) and tail INa (INa(Tail)) for each depolarizing pulse became progressively increased by adding DLT, not by Tef. The recovery time constant following PT stimulation with continued presence of Tef or DLT was shortened by further addition of Dapa. The voltage-dependent hysteresis (Hys(V)) of persistent INa was differentially augmented by Tef or DLT. Taken together, the magnitude, gating, frequency dependence, as well as Hys(V) behavior of INa exerted by the presence of DLT or Tef might exert a synergistic impact on varying functional activities of excitable cells in culture or in vivo.


Assuntos
Piretrinas , Piretrinas/farmacologia , Ciclopropanos , Sódio , Hidrocarbonetos Fluorados
11.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077093

RESUMO

Picaridin (icaridin), a member of the piperidine chemical family, is a broad-spectrum arthropod repellent. Its actions have been largely thought to be due to its interaction with odorant receptor proteins. However, to our knowledge, to what extent the presence of picaridin can modify the magnitude, gating, and/or the strength of voltage-dependent hysteresis (Hys(V)) of plasmalemmal ionic currents, such as, voltage-gated Na+ current [INa], has not been entirely explored. In GH3 pituitary tumor cells, we demonstrated that with exposure to picaridin the transient (INa(T)) and late (INa(L)) components of voltage-gated Na+ current (INa) were differentially stimulated with effective EC50's of 32.7 and 2.8 µM, respectively. Upon cell exposure to it, the steady-state current versus voltage relationship INa(T) was shifted to more hyperpolarized potentials. Moreover, its presence caused a rightward shift in the midpoint for the steady-state inactivate curve of the current. The cumulative inhibition of INa(T) induced during repetitive stimuli became retarded during its exposure. The recovery time course from the INa block elicited, following the conditioning pulse stimulation, was satisfactorily fitted by two exponential processes. Moreover, the fast and slow time constants of recovery from the INa block by the same conditioning protocol were noticeably increased in the presence of picaridin. However, the fraction in fast or slow component of recovery time course was, respectively, increased or decreased with an increase in picaridin concentrations. The Hys(V)'s strength of persistent INa (INa(P)), responding to triangular ramp voltage, was also enhanced during cell exposure to picaridin. The magnitude of resurgent INa (INa(R)) was raised in its presence. Picaritin-induced increases of INa(P) or INa(R) intrinsically in GH3 cells could be attenuated by further addition of ranolazine. The predictions of molecular docking also disclosed that there are possible interactions of the picaridin molecule with the hNaV1.7 channel. Taken literally, the stimulation of INa exerted by the exposure to picaridin is expected to exert impacts on the functional activities residing in electrically excitable cells.


Assuntos
Repelentes de Insetos , Simulação de Acoplamento Molecular , Piperidinas , Sódio/metabolismo
12.
Biomedicines ; 10(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009515

RESUMO

Phenobarbital (PHB, Luminal Sodium®) is a medication of the barbiturate and has long been recognized to be an anticonvulsant and a hypnotic because it can facilitate synaptic inhibition in the central nervous system through acting on the γ-aminobutyric acid (GABA) type A (GABAA) receptors. However, to what extent PHB could directly perturb the magnitude and gating of different plasmalemmal ionic currents is not thoroughly explored. In neuroblastoma Neuro-2a cells, we found that PHB effectively suppressed the magnitude of voltage-gated Na+ current (INa) in a concentration-dependent fashion, with an effective IC50 value of 83 µM. The cumulative inhibition of INa, evoked by pulse train stimulation, was enhanced by PHB. However, tefluthrin, an activator of INa, could attenuate PHB-induced reduction in the decaying time constant of INa inhibition evoked by pulse train stimuli. In addition, the erg (ether-à-go-go-related gene)-mediated K+ current (IK(erg)) was also blocked by PHB. The PHB-mediated inhibition on IK(erg) could not be overcome by flumazenil (GABA antagonist) or chlorotoxin (chloride channel blocker). The PHB reduced the recovery of IK(erg) by a two-step voltage protocol with a geometrics-based progression, but it increased the decaying rate of IK(erg), evoked by the envelope-of-tail method. About the M-type K+ currents (IK(M)), PHB caused a reduction of its amplitude, which could not be counteracted by flumazenil or chlorotoxin, and PHB could enhance its cumulative inhibition during pulse train stimulation. Moreover, the magnitude of delayed-rectifier K+ current (IK(DR)) was inhibited by PHB, while the cumulative inhibition of IK(DR) during 10 s of repetitive stimulation was enhanced. Multiple ionic currents during pulse train stimulation were subject to PHB, and neither GABA antagonist nor chloride channel blocker could counteract these PHB-induced reductions. It suggests that these actions might conceivably participate in different functional activities of excitable cells and be independent of GABAA receptors.

13.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012718

RESUMO

The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.


Assuntos
Amino Álcoois , Caprilatos , Transporte de Íons , Sódio
14.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887240

RESUMO

Carbamazepine (CBZ, Tegretol®) is an anticonvulsant used in the treatment of epilepsy and neuropathic pain; however, several unwanted effects of this drug have been noticed. Therefore, the regulatory actions of CBZ on ionic currents in electrically excitable cells need to be reappraised, although its efficacy in suppressing voltage-gated Na+ current (INa) has been disclosed. This study was undertaken to explore the modifications produced by CBZ on ionic currents (e.g., INa and erg-mediated K+ current [IK(erg)]) measured from Neuro-2a (N2a) cells. In these cells, we found that this drug differentially suppressed the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa in a concentration-dependent manner with effective IC50 of 56 and 18 µM, respectively. The overall current-voltage relationship of INa(T) with or without the addition of CBZ remained unchanged; however, the strength (i.e., ∆area) in the window component of INa (INa(W)) evoked by the short ascending ramp pulse (Vramp) was overly lessened in the CBZ presence. Tefluthrin (Tef), a synthetic pyrethroid, known to stimulate INa, augmented the strength of the voltage-dependent hysteresis (Hys(V)) of persistent INa (INa(P)) in response to the isosceles-triangular Vramp; moreover, further application of CBZ attenuated Tef-mediated accentuation of INa(P)'s Hys(V). With a two-step voltage protocol, the recovery of INa(T) inactivation seen in Neuro-2a cells became progressively slowed by adding CBZ; however, the cumulative inhibition of INa(T) evoked by pulse train stimulation was enhanced during exposure to this drug. Neuro-2a-cell exposure to CBZ (100 µM), the magnitude of erg-mediated K+ current measured throughout the entire voltage-clamp steps applied was mildly inhibited. The docking results regarding the interaction of CBZ and voltage-gate Na+ (NaV) channel predicted the ability of CBZ to bind to some amino-acid residues in NaV due to the existence of a hydrogen bond or hydrophobic contact. It is conceivable from the current investigations that the INa (INa(T), INa(L), INa(W), and INa(P)) residing in Neuro-2a cells are susceptible to being suppressed by CBZ, and that its block on INa(L) is larger than that on INa(T). Collectively, the magnitude and gating of NaV channels produced by the CBZ presence might have an impact on its anticonvulsant and analgesic effects occurring in vivo.


Assuntos
Anticonvulsivantes , Crista Neural , Animais , Anticonvulsivantes/farmacologia , Benzodiazepinas , Carbamazepina/farmacologia , Linhagem Celular , Camundongos , Sódio
15.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806047

RESUMO

QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties. However, whether and how the presence of this compound can result in any modifications of other types of membrane ion channels in native cells are not thoroughly investigated. In this study, we investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 µM, respectively. This compound could shift the activation curve of IK(M) toward a leftward direction with being void of changes in the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+ (KM) channels that will be open increased upon the exposure to QO-58, although no modification in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity, and its increase could be attenuated by further addition of verruculogen, but not by linopirdine (10 µM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa channels with neither change in the gating charge nor in single-channel conductance. Moreover, cell exposure of QO-58 (10 µM) resulted in a minor suppression of IK(erg) amplitude in response to membrane hyperpolarization. The docking results also revealed that there are possible interactions of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity (e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.


Assuntos
Neoplasias Hipofisárias , Humanos , Técnicas de Patch-Clamp , Neoplasias Hipofisárias/patologia
16.
Biomedicines ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740340

RESUMO

Vortioxetine (VOR) is recognized to exert antidepressant actions. However, whether this drug modifies ionic currents in excitable cells remains unclear. The aim of this study was to explore the electrophysiological effects of VOR and other related compounds in pituitary GH3 cells and in Neuro-2a cells. VOR suppressed the delayed-rectifier K+ current (IK(DR)) in a concentration-, time-, and state-dependent manner. Effective IC50 values needed to inhibit peak and sustained IK(DR) were computed to be 31.2 and 8.5 µM, respectively, while the KD value estimated from minimal binding scheme was 7.9 µM. Cell exposure to serotonin (10 µM) alone failed to alter IK(DR), while fluoxetine (10 µM), a compound structurally similar to VOR, mildly suppressed current amplitude. In continued presence of VOR, neither further addition of propranolol nor risperidone reversed VOR-mediated inhibition of IK(DR). Increasing VOR concentration not only depressed IK(DR) conductance but also shifted toward the hyperpolarized potential. As the VOR concentration was raised, the recovery of IK(DR) block became slowed. The IK(DR) activated by a downsloping ramp was suppressed by its presence. The inhibition of IK(DR) by a train pulse was enhanced during exposure to VOR. In Neuro-2a cells, this drug decreased IK(DR). Overall, inhibitory effects of VOR on ionic currents might constitute another underlying mechanism of its actions.

17.
Front Neurol ; 13: 866274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585843

RESUMO

Objectives: To explore the feasibility of predicting overall survival (OS) of patients with midline glioma using multi-parameter magnetic resonance imaging (MRI) features. Methods: Data of 84 patients with midline gliomas were retrospectively collected, including 40 patients with OS > 12 months (28 cases were adults, 14 cases were H3 K27M-mutation) and 44 patients with OS < 12 months (29 cases were adults, 31 cases were H3 K27M-mutation). Features were extracted from the largest slice of tumors, which were manually segmented on T2-weighted (T2w), T2 fluid-attenuated inversion recovery (T2 FLAIR), and contrast-enhanced T1-weighted (T1c) images. Data were randomly divided into training (70%) and test cohorts (30%) and normalized and standardized using Z-scores. Feature dimensionality reduction was performed using the variance method and maximum relevance and minimum redundancy (mRMR) algorithm. We used the logistic regression algorithm to construct three models for T2w, T2 FLAIR, and T1c images as well as one combined model. The test cohort was used to evaluate the models, and receiver operating characteristic (ROC) curves, areas under the curve (AUCs), sensitivity, specificity, and accuracy were calculated. The nomogram of the combined model was built and evaluated using a calibration curve. Decision curve analysis (DCA) was used to evaluate the clinical application value of the four models. Results: A total of 1,316 features were extracted from T2w, T2 FLAIR, and T1c images, respectively. And then the best non-redundant features were selected from the extracted features using the variance method and mRMR. Finally, five features were extracted each from T2w, T2 FLAIR, and T1c images, and 12 features were extracted for the combined model. Four models were established using the optimal features. In the test cohort, the combined model performed the best out of all models. The AUCs of the T2w, T2 FLAIR, T1c, and combined models were 0.73, 0.78, 0.74, and 0.87, respectively, and accuracies were 0.72, 0.76, 0.72, and 0.84, respectively. The ROC curves and DCA showed that the combined model had the highest efficiency and most favorable clinical benefits. Conclusion: The combined radiomics model based on multi-parameter MRI features provided a reliable non-invasive method for the prognostic prediction of midline gliomas.

18.
Biomedicines ; 10(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35453530

RESUMO

Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 µM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 µM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4'-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur.

19.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409204

RESUMO

Mirogabalin (MGB, Tarlige®), an inhibitor of the α2δ-1 subunit of voltage-gated Ca2+ (CaV) channels, is used as a way to alleviate peripheral neuropathic pain and diabetic neuropathy. However, to what extent MGB modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. In pituitary tumor (GH3) cells, we found that MGB was effective at suppressing the peak (transient, INa(T)) and sustained (late, INa(L)) components of the voltage-gated Na+ current (INa) in a concentration-dependent manner, with an effective IC50 of 19.5 and 7.3 µM, respectively, while the KD value calculated on the basis of minimum reaction scheme was 8.2 µM. The recovery of INa(T) inactivation slowed in the presence of MGB, although the overall current-voltage relation of INa(T) was unaltered; however, there was a leftward shift in the inactivation curve of the current. The magnitude of the window (INa(W)) or resurgent INa (INa(R)) evoked by the respective ascending or descending ramp pulse (Vramp) was reduced during cell exposure to MGB. MGB-induced attenuation in INa(W) or INa(R) was reversed by the further addition of tefluthrin, a pyrethroid insecticide known to stimulate INa. MGB also effectively lessened the strength of voltage-dependent hysteresis of persistent INa in response to the isosceles triangular Vramp. The cumulative inhibition of INa(T), evoked by pulse train stimulation, was enhanced in its presence. Taken together, in addition to the inhibition of CaV channels, the NaV channel attenuation produced by MGB might have an impact in its analgesic effects occurring in vivo.


Assuntos
Ácido Acético , Neoplasias Hipofisárias , Compostos Bicíclicos com Pontes , Humanos , Neoplasias Hipofisárias/patologia , Sódio
20.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328544

RESUMO

Zingerone (ZO), a nontoxic methoxyphenol, has been demonstrated to exert various important biological effects. However, its action on varying types of ionic currents and how they concert in neuronal cells remain incompletely understood. With the aid of patch clamp technology, we investigated the effects of ZO on the amplitude, gating, and hysteresis of plasmalemmal ionic currents from both pituitary tumor (GH3) cells and hippocampal (mHippoE-14) neurons. The exposure of the GH3 cells to ZO differentially diminished the peak and late components of the INa. Using a double ramp pulse, the amplitude of the INa(P) was measured, and the appearance of a hysteresis loop was observed. Moreover, ZO reversed the tefluthrin-mediated augmentation of the hysteretic strength of the INa(P) and led to a reduction in the ICa,L. As a double ramp pulse was applied, two types of voltage-dependent hysteresis loops were identified in the ICa,L, and the replacement with BaCl2-attenuated hysteresis of the ICa,L enhanced the ICa,L amplitude along with the current amplitude (i.e., the IBa). The hysteretic magnitude of the ICa,L activated by the double pulse was attenuated by ZO. The peak and late INa in the hippocampal mHippoE-14 neurons was also differentially inhibited by ZO. In addition to acting on the production of reactive oxygen species, ZO produced effects on multiple ionic currents demonstrated herein that, considered together, may significantly impact the functional activities of neuronal cells.


Assuntos
Neoplasias Hipofisárias , Sódio , Potenciais de Ação , Guaiacol/análogos & derivados , Humanos , Transporte de Íons , Neurônios , Neoplasias Hipofisárias/patologia , Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA