Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Cosmet Investig Dermatol ; 17: 1259-1263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827628

RESUMO

Porokeratosis (PK), characterized by keratotic lesions with an atrophic center and a prominent peripheral ridge, with a typical histological hallmark, namely, the cornoid lamella, has two forms: disseminated and localized. While PK often converts into squamous cell carcinoma (SCC), conversion from disseminated superficial porokeratosis (DSP) alone is rarely reported except for one case in which DSP and LP coexisted and converted to SCC. Here, we report the case of a patient with SCC converted from DSP alone, presenting with coin-sized macules on the bottom right of his waist that developed into an ulcer at the center. The patient underwent radiation therapy, which effectively treated the SCC but did not resolve the PK. This article highlights regular follow-up and undergo comprehensive diagnosis, both of which are beneficial to enable early detection and management of DSP that has converted to into SCC; in addition, standardized medical treatment may help improve the treatment therapeutic effect of in similar diseases.

2.
Front Immunol ; 15: 1383263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736879

RESUMO

Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.


Assuntos
Acne Vulgar , Macrófagos , Acne Vulgar/imunologia , Acne Vulgar/tratamento farmacológico , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Animais , Pele/imunologia , Pele/patologia , Pele/metabolismo
3.
Arch Dermatol Res ; 316(5): 181, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762688

RESUMO

Background An increasing body of observational studies has indicated a potential link between allergic diseases, namely atopic dermatitis (AD), allergic rhinitis (AR), allergic asthma (AA), and psoriasis (PSO) as well as psoriatic arthritis (PSA). However, the presence and causal direction of this association remain uncertain. Methods We conducted two-sample Mendelian randomization (TSMR) analyses utilizing summary statistics derived from genome-wide association studies (GWAS) consortia. The summary statistics were obtained from a substantial participant cohort, consisting of 116,000 individuals (21,000 AD cases and 95,000 controls), 462,933 individuals (26,107 AR cases and 436,826 controls), and 140,308 individuals (4859 AA cases and 135,449 controls). The summary statistics for PSO (9267 cases and 360,471 controls) and PSA (3186 cases and 240,862 controls) were sourced from the FinnGen database. The primary analytical approach employed inverse variance weighting (IVW) as the main method within TSMR. We validated our findings through a series of sensitivity analyses. Furthermore, we performed reverse TSMR analyses to evaluate the potential presence of reverse causality. Results Our investigation revealed a potential protective effect of AD against both PSO (OR = 0.922, 95% CI = 0.863-0.984, p = 0.015)and PSA(OR = 0.915, 95% CI = 0.843-0.993, p = 0.033). Moreover, employing inverse MR analysis, we obtained compelling evidence supporting the protective role of PSO in preventing AD (OR = 0.891, 95% CI = 0.829-0.958, p = 0.002), as well as AR (OR = 0.998, 95% CI = 0.996-0.999, p = 0.008), these associations remained statistically significant even after Bonferroni correction was applied to account for multiple comparisons. Furthermore, our findings did not reveal any substantial causal relationship between AA and either PSO or PSA. Conclusion Our study provides compelling evidence that PSO significantly confers protection against both AD and AR, while AD is likely to act as a protective factor for both PSO and PSA. Despite previous studies suggesting an association between allergic diseases and the incidence of PSO and PSA, our findings do not support this claim. To obtain more accurate and reliable conclusions regarding the causal mechanisms involved, larger sample sizes in randomized controlled trials or MR studies are warranted.


Assuntos
Artrite Psoriásica , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Psoríase , Humanos , Análise da Randomização Mendeliana/métodos , Artrite Psoriásica/genética , Artrite Psoriásica/epidemiologia , Artrite Psoriásica/diagnóstico , Psoríase/genética , Psoríase/epidemiologia , Psoríase/imunologia , Polimorfismo de Nucleotídeo Único , Rinite Alérgica/genética , Rinite Alérgica/epidemiologia , Asma/genética , Asma/epidemiologia , Dermatite Atópica/genética , Dermatite Atópica/epidemiologia , Predisposição Genética para Doença
4.
Biomed Pharmacother ; 174: 116515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569276

RESUMO

Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.


Assuntos
Artrite Experimental , Microbioma Gastrointestinal , Ginsenosídeos , Células-Tronco Mesenquimais , Animais , Humanos , Masculino , Ratos , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/microbiologia , Artrite Experimental/terapia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/microbiologia , Artrite Reumatoide/terapia , Exossomos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical , Colágeno/metabolismo , Colágeno/farmacologia
5.
Theranostics ; 14(3): 1147-1167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323315

RESUMO

Interest surrounding the effect of irradiation on immune activation has exponentially grown within the last decade. This includes work regarding mechanisms of the abscopal effect and the success achieved by combination of radiotherapy and immunotherapy. It is hypothesized that irradiation triggers the immune system to eliminate tumors by inducing tumor cells immunogenic cell death (ICD) in tumor cells. Activation of the ICD pathways can be exploited as an in situ vaccine. In this review, we provide fundamental knowledge of various forms of ICD caused by irradiation, describe the relationship between various cell death pathways and the immune activation effect driven by irradiation, and focus on the therapeutic value of exploiting these cell death programs in the context of irradiation. Furthermore, we summarize the immunomodulatory effect of different cell death programs on combinative radiotherapy and immunotherapy. In brief, differences in cell death programs significantly impact the irradiation-induced immune activation effect. Evaluating the transition between them will provide clues to develop new strategies for radiotherapy and its combination with immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Morte Celular , Imunoterapia , Sistema Imunitário , Vacinação
6.
Clin Epigenetics ; 16(1): 10, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195623

RESUMO

BACKGROUND: Metastasis is the primary cause of recurrence and death in patients with papillary thyroid carcinoma (PTC). LncRNA ACTA2-AS1, a long non-coding RNA, acts as a tumor suppressor in multiple types of human malignancies, while the role of ACTA2-AS1 in PTC metastasis remains unclear. METHODS: The ACTA2-AS1 expression in PTC tissues was analyzed. The sponged roles of ACTA2-AS1 via miR-4428/KLF9 axis were identified using starBase tool. The function of ACTA2-AS1 in PTC was performed with in vitro and in vivo experiments. The correlation between DNA methylation and mRNA expressions of these gene in the TCGA dataset was explored. RESULTS: ACTA2-AS1 expression was downregulated in PTC tissues without metastasis and further decreased in PTC tissues with lymph node metastasis compared with that in normal tissues. Functionally, the overexpression of ACTA2-AS1 inhibited the growth, proliferation, and invasion of PTC cells, whereas its depletion exerted opposite effect. In vivo, ACTA2-AS1 expression inhibited PTC metastasis. Furthermore, ACTA2-AS1 acted as a competing endogenous RNA for miR-4428, thereby positively regulating the expression of miR-4428 target gene, KLF9. Finally, miR-4428 overexpression enhanced invasive potential of PTC cells and significantly weakened the effects of ACTA2-AS1 on promotion and inhibition of KLF9 expression as well as invasive ability of PTC cells, respectively. In the TCGA dataset, the methylation level of ACTA2-AS1 was significantly correlated with its mRNA expression (r = 0.21, p = 2.1 × e-6). CONCLUSIONS: Our findings demonstrate that ACTA2-AS1 functions as a tumor suppressor in PTC progression at least partly by regulating the miR-4428-dependent expression of KLF9.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , RNA Longo não Codificante/genética , Metilação de DNA , Neoplasias da Glândula Tireoide/genética , RNA Mensageiro , MicroRNAs/genética , Fatores de Transcrição Kruppel-Like/genética , Actinas/genética
7.
Cell Rep Med ; 4(12): 101303, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38029750

RESUMO

The inadequate activation of antigen-presenting cells, the entanglement of T cells, and the highly immunosuppressive conditions in the tumor microenvironment (TME) are important factors that limit the effectiveness of cancer vaccines. Studies show that a personalized and broad antigen repertoire fully activates anti-tumor immunity and that inhibiting the function of transforming growth factor (TGF)-ß facilitates T cell migration. In our study, we introduce a vaccine strategy by engineering irradiated tumor cell-derived microparticles (RT-MPs), which have both personalized and broad antigen repertoire, to induce comprehensive anti-tumor effects. Encouraged by the proinflammatory effects of the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the high affinity between TGF-ß receptor 2 (TGFBR2) and TGF-ß, we develop RT-MPs with the SARS-CoV-2 spike protein and TGFBR2. This spike protein and high TGFBR2 expression induce the innate immune response and ameliorate the immunosuppressive TME, thereby promoting T cell activation and infiltration and ultimately inhibiting tumor growth. Our study provides a strategy for producing an effective personalized anti-tumor vaccine.


Assuntos
Vacinas Anticâncer , Micropartículas Derivadas de Células , Neoplasias , Humanos , Glicoproteína da Espícula de Coronavírus , Receptor do Fator de Crescimento Transformador beta Tipo II , Micropartículas Derivadas de Células/metabolismo , Neoplasias/terapia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
8.
Pharmacol Res ; 197: 106945, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797662

RESUMO

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Nanoparticles as drug delivery systems (DDSs) show promise for MDR cancer therapy. However, current DDSs require sophisticated design and construction based on xenogeneic nanomaterials, evoking feasibility and biocompatibility concerns. Herein, a simple but versatile biological DDS (bDDS) composed of human red blood cell (RBC)-derived vesicles (RDVs) with excellent biocompatibility was surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs that remarkably suppressed MDR in uterine sarcoma through a lysosomal-mitochondrial axis-dependent cell death mechanism. Dox-gluRDVs can efficiently deliver and accumulate Dox in lysosomes, bypassing drug efflux transporters and facilitating cellular uptake and retention of Dox in drug-resistant MES-SA/Dx5 cells. The transfer of lysosomal calcium to the mitochondria during mitochondria-lysosome contact due to lysosomal Dox accumulation may result in mitochondrial ROS overproduction, mitochondrial membrane potential loss, and activation of apoptotic signaling for the superior anti-MDR activity of Dox-gluRDVs in vitro and in vivo. This work highlights the great promise of RDVs to serve as a bDDS of Dox to overcome MDR cancers but also opens up a reliable strategy for lysosomal-mitochondrial axis-dependent cell death for fighting against other inoperable cancers.


Assuntos
Neoplasias , Humanos , Preparações Farmacêuticas , Morte Celular , Lisossomos , Mitocôndrias , Eritrócitos , Doxorrubicina/farmacologia
9.
Biochem Biophys Res Commun ; 682: 365-370, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37839105

RESUMO

In non-small cell lung cancer (NSCLC), the receptor tyrosine kinase AXL has been identified as a potent activator of tumor progression and resistance to therapies. However, the molecular mechanisms behind AXL-mediated oncogenesis remain elusive. Current study thus aimed to uncover potential downstream genes regulated by AXL in NSCLC. Through transcriptomic RNA sequencing of AXL-silenced NSCLC cells, TMEM14A was identified as a significantly up-regulated gene. Clinical evaluations using GEPIA2 revealed that TMEM14A mRNA expression was notably higher in lung adenocarcinoma (LUAD) tumor tissues compared to normal tissues. Further, significantly increased TMEM14A levels were associated with poorer overall survival in LUAD patients. Experimentally, silencing TMEM14A in NSCLC cells led to reduced cellular proliferation and ATP levels, highlighting a key role of TMEM14A in NSCLC progression. Moreover, our promoter analysis demonstrated that AXL-mediated regulation of TMEM14A transcription could involve binding of transcription factors STAT and NF-κB to 5'-promoter of TMEM14A. Collectively, current study unveils TMEM14A as a novel downstream target of AXL, suggesting its potential as a therapeutic target to counteract resistance in future NSCLC patients undergoing AXL-targeted therapies.


Assuntos
Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptor Tirosina Quinase Axl/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
10.
Int Immunopharmacol ; 118: 110111, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028275

RESUMO

BACKGROUND: Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established. METHODS: C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting. RESULTS: STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1ß(IL-1ß), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS. CONCLUSIONS: The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response.


Assuntos
Lesões Encefálicas , Sepse , Camundongos , Animais , Piroptose , Caspase 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gasderminas , Proteínas NLR/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Inflamassomos/metabolismo , Citocinas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
11.
J Nanobiotechnology ; 20(1): 189, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418077

RESUMO

Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100-1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
12.
Front Oncol ; 12: 1030802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620545

RESUMO

Introduction: Head and neck squamous cell carcinoma (HNSCC) is a malignant neoplasm typically induced by alcohol and tobacco consumption, ranked the sixth most prevalent cancer globally. This study aimed to establish a cuproptosis-related lncRNA predictive model to assess the clinical significance in HNSCC patients. Methods: The Cancer Genome Atlas (TCGA) database was utilized to download cuproptosis-related genes, lncRNAs profiles, and selected clinical information of 482 HNSCC samples. Cuproptosis-related lncRNAs were analyzed by Pearson correlation method, with the least absolute shrinkage and selection operator (LASSO) and univariate/multivariate Cox analyses performed to establish the cuproptosis-related lncRNA predictive model. Subsequently, the time-dependent receiver operating characteristics (ROC) and Kaplan-Meier analysis were applied to assess its prediction ability, and the model was verified by a nomogram, univariate/multivariate Cox analysis, and calibration curves. Furthermore, the principal component analysis (PCA), immune analysis, and gene set enrichment analyses (GSEA) were performed, and the 50% inhibitory concentration (IC50) prediction in the risk groups was calculated. Furthermore, the expression of six cuproptosis-related lncRNAs in HNSCC and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR). Results: A total of 467 lncRNAs were screened as cuproptosis-associated lncRNAs in HNSCC tissues to establish an eight cuproptosis-related lncRNA prognostic signature consisting of AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT, FAM27E3, JPX, and LNC01089. For the high-risk group, the results demonstrated a satisfactory predicting performance with considerably worse overall survival (OS). Multivariate Cox regression confirmed that the risk score was a reliable predictive factor (95% CI: 1.089-1.208, hazard ratio =1.147), with the area of 1-, 3-, and 5-year OS under the ROC curve of 0.690, 0.78524, and 0.665, respectively. The differential analysis revealed that JPX was significantly upregulated in HNSCC tissues, while AC024075.3, AC090587.2, AC116914.2, AL450384.2, CDKN2A-DT were downregulated in HNSCC tissues by qRT-PCR assays. In addition, this gene signature was also associated with some immune-related pathways and immune cell infiltration and affected the anti-cancer immune response. Furthermore, Bexarotene, Bleomycin, Gemcitabine, etc., were identified as potential therapeutic compounds for HNSCC. Discussions: This novel cuproptosis-related lncRNAs prognostic signature could predict prognosis and help propose novel individual therapeutic targets for HNSCC.

13.
J Adv Res ; 30: 185-196, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026295

RESUMO

Introduction: Chemotherapeutic drugs are the main intervention for cancer management, but many drawbacks impede their clinical applications. Nanoparticles as drug delivery systems (DDSs) offer much promise to solve these limitations. Objectives: A novel nanocarrier composed of red blood cell (RBC)-derived vesicles (RDVs) surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs was investigated for improved cancer therapy. Methods: We investigated the in vivo antineoplastic performance of Dox-gluRDVs through intravenous (i.v.) administration in the mouse model bearing subcutaneous (s.c.) B16F10 tumor and examined the in vitro antitumor mechanism and efficacy in a panel of cancer cell lines. Results: Dox-gluRDVs can exert superior anticancer activity than free Dox in vitro and in vivo. Distinct from free Dox that is mainly located in the nucleus, but instead Dox-gluRDVs release and efficiently deliver the majority of their conjugated Dox into lysosomes. In vitro mechanism study reveals the critical role of lysosomal Dox accumulation-mediated mitochondrial ROS overproduction followed by the mitochondrial membrane potential loss and the activation of apoptotic signaling for superior anticancer activity of Dox-gluRDVs. Conclusion: This work demonstrates the great potential of RDVs to serve a biological DDS of Dox for systemic administration to improve conventional cancer chemotherapeutics.


Assuntos
Doxorrubicina/administração & dosagem , Eritrócitos/química , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Fixadores/química , Glutaral/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio
14.
Mol Oncol ; 15(1): 262-278, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107691

RESUMO

Increasing evidence demonstrates that Lin28B plays critical roles in numerous biological processes including cell proliferation and stemness maintenance. However, the molecular mechanisms underlying Lin28B nuclear translocation remain poorly understood. Here, we found for the first time that KRAS promoted Lin28B nuclear translocation through PKCß, which directly bound to and phosphorylated Lin28B at S243. Firstly, we observed that Lin28B was upregulated in pancreatic cancer, contributing to cellular migration and proliferation. Furthermore, nuclear Lin28B upregulated TET3 messenger RNA and protein levels by blocking the production of mature let-7i. Subsequently, increased TET3 expression could also promote the expression of Lin28B, thereby forming a Lin28B/let-7i/TET3 feedback loop. Our results suggest that the KRAS/Lin28B axis drives the let-7i/TET3 pathway to maintain the stemness of pancreatic cancer cells. These findings illuminate the distinct mechanism of Lin28B nuclear translocation and its important roles in KRAS-driven pancreatic cancer, and have important implications for development of novel therapeutic strategies for this cancer.


Assuntos
Dioxigenases/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Proteína Quinase C beta/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
15.
Exp Cell Res ; 393(1): 112091, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422133

RESUMO

Methyl-CpG-binding domain 3 (MBD3), as an induced stem cells reprogramming barrier, has an abnormal expression in various prevalent malignancies. However, in pancreatic cancer cell stemness, the roles of MBD3 remain unclear. In our study, the effects of MBD3 were investigated on the proliferation, stemness and the underlying mechanism in pancreatic cancer cells. Firstly, MBD3 knockdown was proved to promote proliferation and sphere formation of pancreatic cancer cells and tumorigenesis, while MBD3 upregulation inhibited the above results. Also, MBD3 downregulation notably increased stemness markers level of OCT4, NANOG and SOX2, and MBD3 upregulation resulted in the opposite effects. Mechanically, it was found that MBD3 involved in activation of Hippo pathway. There was a negative correlation between MBD3 and YAP expression in TCGA database. MBD3 knockdown improved YAP expression, and promoted YAP nuclear translocation increased TEAD luciferase activity, while MBD3 overexpression reversed the above results. Further evidence revealed that YAP could bind to MBD3, and decreased MBD3 expression. Collectively, MBD3 bound to YAP to significantly inhibit proliferation and weaken stemness maintenance in pancreatic cancer cells, as well as reduce tumorigenesis via Hippo signaling. Thus, MBD3 may serve as a potential molecular biomarker for exploring new therapeutic strategies to treat pancreatic cancer.


Assuntos
Proteínas de Ligação a DNA/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Pancreáticas
16.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111101

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, food additives, pigments, rubber manufacture, and electronic materials. Several studies have shown that ZnO-NPs inhibit cell growth and induce apoptosis by the production of oxidative stress in a variety of human cancer cells. However, the anti-cancer property and molecular mechanism of ZnO-NPs in human gingival squamous cell carcinoma (GSCC) are not fully understood. In this study, we found that ZnO-NPs induced growth inhibition of GSCC (Ca9-22 and OECM-1 cells), but no damage in human normal keratinocytes (HaCaT cells) and gingival fibroblasts (HGF-1 cells). ZnO-NPs caused apoptotic cell death of GSCC in a concentration-dependent manner by the quantitative assessment of oligonucleosomal DNA fragmentation. Flow cytometric analysis of cell cycle progression revealed that sub-G1 phase accumulation was dramatically induced by ZnO-NPs. In addition, ZnO-NPs increased the intracellular reactive oxygen species and specifically superoxide levels, and also decreased the mitochondrial membrane potential. ZnO-NPs further activated apoptotic cell death via the caspase cascades. Importantly, anti-oxidant and caspase inhibitor clearly prevented ZnO-NP-induced cell death, indicating the fact that superoxide-induced mitochondrial dysfunction is associated with the ZnO-NP-mediated caspase-dependent apoptosis in human GSCC. Moreover, ZnO-NPs significantly inhibited the phosphorylation of ribosomal protein S6 kinase (p70S6K kinase). In a corollary in vivo study, our results demonstrated that ZnO-NPs possessed an anti-cancer effect in a zebrafish xenograft model. Collectively, these results suggest that ZnO-NPs induce apoptosis through the mitochondrial oxidative damage and p70S6K signaling pathway in human GSCC. The present study may provide an experimental basis for ZnO-NPs to be considered as a promising novel anti­tumor agent for the treatment of gingival cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Neoplasias Gengivais/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Óxido de Zinco/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Gengiva , Humanos , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
17.
Int J Cancer ; 146(10): 2901-2912, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31633800

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer mortality worldwide. Emerging evidence indicates that tumour cells release substantial amounts of RNA into the bloodstream, in which RNA strongly resists RNases and is present at sufficient levels for quantitative analyses. Our study aimed to discover blood-based markers for the early detection of CRC and to ascertain their efficiency in discriminating healthy controls, patients with polyps and adenomas and cancer patients. We first analysed and screened ZFAS1, SNHG11, LINC00909 and LINC00654 in a bioinformatics database and then collected clinical plasma samples for preliminary small-scale analysis and further large-scale verification. We then explored the mechanism of dominant lncRNA SNHG11 expression in CRC by in vitro and in vivo assays. The combination of ZFAS1, SNHG11, LINC00909 and LINC00654 showed high diagnostic performance for CRC (AUC: 0.937), especially early-stage disease (AUC: 0.935). Plasma levels of the four candidate lncRNAs were significantly reduced in postoperative samples compared to preoperative samples. A panel including these four lncRNAs performed well in distinguishing patient groups with different stages of colon disease, and SNHG11 exhibited the greatest diagnostic ability to identify precancerous lesions and early-stage tumour formation. Mechanistically, high SNHG11 expression promotes proliferation and metastasis by targeting the Hippo pathway. Taken together, the data indicate that SNHG11 may be a novel therapeutic target for the treatment of CRC and a potential biomarker for the early detection of CRC.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , RNA Longo não Codificante/sangue , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adenoma/sangue , Adenoma/diagnóstico , Adenoma/patologia , Animais , Neoplasias Colorretais/patologia , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Prognóstico
18.
Artigo em Inglês | MEDLINE | ID: mdl-29868491

RESUMO

Group A streptococcus (GAS), a common pathogen, is able to escape host immune attack and thus survive for longer periods of time. One of the mechanisms used by GAS is the upregulated expression of immunosuppressive molecules, which leads to a reduction in the production of inflammatory cytokines in immune cells. In the present study, we found that macrophages produced lower levels of proinflammatory cytokines (IL-1ß, TNF-α, IL-6) when challenged with GAS than they did when challenged with Escherichia coli (E. coli). Simultaneously, in a mouse model of lung infection, GAS appeared to induce a weaker inflammatory response compared to E. coli. Our data also indicated that the expression of the A20 transcriptional regulator was higher in GAS-infected macrophages than that in macrophages infected with E. coli, and that high expression of A20 correlated with a reduction in the production of TRAF6. SiRNA targeting of A20 led to the increased production of TRAF6, IL-1ß, TNF-α, and IL-6, suggesting that A20 inhibits synthesis of these key proinflammatory cytokines. We also investigated the pathway underlying A20 production and found that the synthesis of A20 depends on My88, and to a lower extent on TNFR1. Finally, we showed a significant reduction in the expression of A20 in macrophages stimulated by M protein-mutant GAS, however, a speB-GAS mutant, which is unable to degrade M protein, induced a greater level of A20 production than wild type GAS. Collectively, our data suggested that M protein of GAS was responsible for inducing A20 expression in macrophages, which in turn down-regulates the inflammatory cytokine response in order to facilitate GAS in evading immune surveillance and thus prolong survival in the host.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Pulmão/imunologia , Macrófagos/imunologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pyogenes/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/imunologia , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/microbiologia , Células RAW 264.7 , Streptococcus pyogenes/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Nanoscale ; 10(6): 2998-3007, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29372743

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons. With their migration capacity toward the sites of diseased DA neurons in the PD brain, mesenchymal stem cells (MSCs) have the potential to differentiate to DA neurons for the replacement of damaged neurons and to secrete neurotrophic factors for the protection and regeneration of diseased DA neurons; therefore MSCs show promise for the treatment of PD. In this study, for the first time, we demonstrate that dextran-coated iron oxide nanoparticles (Dex-IO NPs) can improve the therapeutic efficacy of human MSCs (hMSCs) in a mouse model of PD induced by a local injection of 6-hydroxydopamine (6-OHDA). In situ examinations not only show that Dex-IO NPs can improve the rescue effect of hMSCs on the loss of host DA neurons but also demonstrate that Dex-IO NPs can promote the migration capacity of hMSCs toward lesioned DA neurons and induce the differentiation of hMSCs to DA-like neurons at the diseased sites. We prove that in vitro Dex-IO NPs can enhance the migration of hMSCs toward 6-OHDA-damaged SH-SY5Y-derived DA-like cells, induce hMSCs to differentiate to DA-like neurons in the conditioned media derived from 6-OHDA-damaged SH-SY5Y-derived DA-like cells and promote the protection/regeneration effects of hMSCs on 6-OHDA-damaged SH-SY5Y-derived DA-like cells. We confirm the potential of MSCs for cell-based therapy for PD. Dex-IO NPs can be used as a tool to accelerate and optimize MSC therapeutics for PD applicable clinically.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Compostos Férricos/química , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Doença de Parkinson/terapia , Animais , Linhagem Celular , Dextranos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
20.
Int J Infect Dis ; 44: 50-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26854198

RESUMO

OBJECTIVES: The aim of this study was to explore the pathogenic mechanism of group A Streptococcus (GAS) and to investigate how GAS evades phagocytosis by immune cells. METHODS: The classical inflammatory signaling pathway of macrophages infected with GAS was investigated by protein microarray, real-time PCR, Western blot, immunoprecipitation, and flow cytometry. RESULTS: GAS induced a lower level of inflammatory mediators in macrophages than either the Gram-positive Staphylococcus aureus or the Gram-negative Escherichia coli. Therefore, the conventional inflammatory signal pathway was investigated. It was found that GAS and S. aureus induced both toll-like receptor (TLR)2 and TLR4 expression, while Gram-negative E. coli only activated TLR4 in RAW264.7 cells. Although MyD88, the main adaptor protein, was activated by the three pathogens, there was no difference in MyD88 expression in macrophages. Nuclear factor kappa B (NF-κB) is the classical transcription factor of inflammatory signals, and the results of the present study showed that GAS, similar to E. coli, induced a weaker p65 nuclear translocation compared to S. aureus. Interestingly, GAS activated NF-κB by inducing p65-p52 heterodimer, but not the classical heterodimer of NF-κB (p65-p50), while E. coli activated NF-κB by inducing both p65-p50 and p65-p52 heterodimers. CONCLUSIONS: Compared to S. aureus and E. coli infection, GAS induced a weaker nuclear translocation and distinct combination of NF-κB subunits in macrophages, which probably leads to a weak inflammatory response.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , NF-kappa B/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Escherichia coli , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Inflamação/imunologia , Inflamação/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Staphylococcus aureus , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA