Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110571, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184443

RESUMO

Nitrogen doped carbon materials have been studied as catalyst support for ammonia decomposition. There are 4 different types of nitrogen environments (graphitic, pyrrolic, pyridinic and nitrogen oxide) on the amorphous support identified. In this paper, we report a 5%Ru on MgCO3 pre-treated nitrogen doped carbon catalyst with high content of edge nitrogen-containing sites which displays an ammonia conversion rate of over 90% at 500°C and WHSV = 30,000 mL gcat -1 h-1. It also gives an impressive hydrogen production rate of 31.3 mmol/(min gcat) with low apparent activation energy of 43 kJ mol-1. Fundamental studies indicate that the distinct average Ru-N4 coordination site on edge regions is responsible for such high catalytic activity. Ammonia is stepwise decomposed via a Ru-N(H)-N(H)-Ru intermediate. This associative mechanism circumvents the direct cleavage of energetic surface nitrogen from metal to form N2 hence lowering the activation barrier for the decomposition over this catalyst.

2.
Angew Chem Int Ed Engl ; : e202414452, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39205492

RESUMO

All-soluble all-iron redox flow batteries (AIRFBs) are an innovative energy storage technology that offer significant financial benefits. Stable and affordable redox-active materials are essential for the commercialization of AIRFBs, yet the battery stability must be significantly improved to achieve practical value. Herein, ferrous complexes combined with the triisopropanolamine (TIPA) ligand are identified as promising anolytes to extend battery life by reducing cross-contamination due to a pronounced steric hindrance effect. The coordination structure and failure mechanism of our Fe-TIPA complexes were determined by molecular dynamics simulation and spectroscopic experiments. By coupling with [Fe(CN)6]4 -/3- , Fe-TIPA/Fe-CN AIRFBs retained excellent stability exceeding 1831 cycles at 80 mA·cm -2 , yielding an energy efficiency of ~80% and maintaining a steady discharge capacity. Moreover, the all-soluble electrolyte was tested in an industrial-scale Fe-TIPA/Fe-CN AIRFB prototype energy storage system, where an energy efficiency of 81.3% was attained. Given the abundance of iron resources, we model the TIPA AIRFB electrolyte cost to be as low as 32.37 $/kWh, which is significantly cheaper than the current commercial level. This work demonstrates that steric hindrance is an effective measure to extended battery life, facilitating the commercial development of affordable flow batteries.

3.
J Am Chem Soc ; 146(22): 15219-15229, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775440

RESUMO

Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.

4.
J Synchrotron Radiat ; 25(Pt 5): 1395-1399, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179178

RESUMO

This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high-intensity synchrotron X-ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5-7.8 keV and photon fluxes up to 1.53 × 1012 photons s-1. The experimentally observed cation reduction was theoretically explained by a first-principles formation-energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X-ray-excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y-doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X-ray-induced OVD generating process. Both the core-hole-dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X-ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical-property modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA