Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048070

RESUMO

Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the "gold standard" in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Transporte Biológico , Transporte de Íons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int J Clin Pract ; 2022: 4593443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936064

RESUMO

Methods: Sixteen male mice were randomly divided into 4 groups: control (ordinary feeding), D-gal (D-galactose) group, D-gal + MSC (human umbilical cord Wharton jelly cells), and D-gal + MSC-TNFα groups. Except for the control group (fed with same amount of saline solution), other mice received gastric feeding of 250 mg/kg D-galactose every day for 8 weeks. TNFα (10 ng/mL for 24 h) cocultured or noncocultured HUCWJCs (5 × 105) were suspended in 0.1 ml of sterile PBS and injected into tail veins every other week in D-gal + MSC-TNFα and D-gal + MSC groups, respectively, and only 0.1 ml of sterile PBS for control and D-gal groups. The bone mass was detected by qPCR, ELISA, microcomputed tomography (µCT), and hematoxylin-eosin staining. Proliferation, apoptosis, and differentiation of periosteal-derived osteoblasts (POB) were assessed. Transwell assay and scratch healing were performed to detect POB migration and invasion ability. The effect of HUCWJCs on POB signaling pathway expression was evaluated by immunoblotting. Results: The malondialdehyde (MDA) in serum was higher and superoxide dismutase (SOD) was lower in the D-gal group compared to the other groups (p < 0.05). Mice in D-gal group showed significantly decreased bone mass when compared to the control group, while HUCWJCs treatment partially rescued the phenotype, as demonstrated by µCT and histology (p < 0.05). Mechanically, HUCWJCs treatment partially promoted proliferation and migration and decreased apoptosis of POB induced by oxidative stress via activating the mitogen-activated protein kinase (MAPK) signaling pathway. Conclusion: HUCWJCs can prevent the progression of osteoporosis by inhibiting oxidative stress, which may act by regulating osteoblasts fate through the MAPK signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Animais , Galactose/metabolismo , Galactose/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Cordão Umbilical/metabolismo , Microtomografia por Raio-X
3.
Apoptosis ; 27(5-6): 409-425, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435532

RESUMO

Oxidative stress-induced autophagy dysfunction is involved in the pathogenesis of intervertebral disc degeneration (IVDD). MicroRNAs (miRNAs) not only have been regarded as important regulators of IVDD but also reported to be related to autophagy. This research was aimed to explore the role of miR-130b-3p in IVDD and its regulation on autophagy mechanism. The miR-130b-3p expression in the patient's degenerative nucleus pulposus (NP) samples and rat NP tissues was detected by qRT-PCR and FISH assay. The miR-130b-3p was knocked down or overexpressed in the human NP cells by lentivirus transfection. TBHP was used to induce oxidative stress in the human NP cells. Apoptosis, senescence, and autophagy were evaluated by flow cytometry, ß-gal staining, immunofluorescence, electron microscopy, and Western blot in the miR-130b-3p knocked down human NP cells under TBHP treatment. The relationship between the miR-130b-3p and ATG14 or PRKAA1 was confirmed by luciferase assay. The siRNA transfection was used to knock down the ATG14 and PRKAA1 expression, and then the human NP cells functions were further determined. In the in vivo experiment, the IVDD rat model was constructed and an adeno-associated virus (AAV)-miR-130b-3p inhibitor was intradiscally injected. After that, MRI and histological staining were conducted to evaluate the role of miR-130b-3p inhibition in the IVDD rat model. We found that the miR-130b-3p was upregulated in the degenerative NP samples from humans and rats. Interestingly, the inhibition of miR-130b-3p rescued oxidative stress-induced dysfunction of the human NP cells, and miR-130b-3p inhibition upregulated autophagy. Mechanistically, we confirmed that the miR-130b-3p regulated the ATG14 and PRKAA1 directly and the knockdown of the ATG14 or PRKAA1 as well as the treatment of autophagy inhibitor blockaded the autophagic flux and reversed the protective effects of miR-130b-3p inhibition in the TBHP-induced human NP cells. Furthermore, the inhibition of the miR-130b-3p via AAV- miR-130b-3p injection ameliorated the IVDD in a rat model. These data demonstrated that the miR-130b-3p inhibition could upregulate the autophagic flux and alleviate the IVDD via targeting ATG14 and PRKAA1.The translational potential of this article: The suppression of miR-130b-3p may become an effective therapeutic strategy for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Animais , Apoptose/genética , Autofagia/genética , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Ratos
4.
Cell Death Discov ; 8(1): 166, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383144

RESUMO

This study aimed to investigate the role of deubiquitinating enzyme 3 (DUB3) in the regulation of Krüppel-like factor 4 (KLF4) expression in hepatocellular carcinoma (HCC). Gain- and loss-of-function assay, luciferase reporter assay, co-immunoprecipitation, and intracellular and extracellular deubiquitination assays were conducted in vitro. A tumor xenograft mouse model was established. The expression of DUB3 and KLF4 was examined in HCC patient specimens. The results showed that DUB3 upregulated KLF4 expression by deubiquitinating and stabilizing KLF4 protein in HCC cells through binding with KLF4. DUB3 inhibited HCC cell proliferation in vitro and tumor growth in vivo while enhancing the chemosensitivity of HCC cells in a KLF4-dependent manner. Furthermore, KLF4 promoted DUB3 transcription by binding to the DUB3 promoter. In HCC patients, DUB3 expression positively correlated with KLF4 expression in HCC tissues. Low DUB3 expression predicted worse overall survival and recurrence in HCC patients. In conclusion, this study revealed a positive DUB3/KLF4 feedback loop that inhibits tumor growth and chemoresistance in HCC. These results suggest that DUB3/KLF4 activation might be a potential therapeutic approach for HCC treatment.

5.
J Orthop Translat ; 29: 19-29, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34094855

RESUMO

BACKGROUND: Krüppel like factor 10 (KLF10), which is also known as TGF-ß Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. METHODS: The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. RESULTS: We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1ß induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-ß signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. CONCLUSIONS: This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-ß signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.

6.
Biochem Biophys Res Commun ; 545: 54-61, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33545632

RESUMO

ACTG1 is a member of the actin family but is not a muscle actin gene. The ACTG1 mutation leads to hearing loss in humans, and the knockdown of ACTG1 suppresses the proliferation and migration of tumor cells; however, its role in intervertebral disc degeneration (IDD) is yet unclear. Bioinformatics methods revealed that ACTG1 might be a hub gene in IDD. Furthermore, the expression ACTG1 in severely degenerated nucleus pulposus (NP) tissues (Pfirrmann grade IV and V) was low as compared to that in mildly degenerated samples (Pfirrmann grade II and III). Moreover, the ACTG1 level was negatively correlated with human disc degeneration grades. The low expression of ACTG1 is also found in degenerated NP tissues in the rat. To further explore the function of ACTG1 in IDD, the gene expression was depleted in human NP cells via siRNA transfection. The ablation of ACTG1 increased MMP3 expression but decreased the level of collagen II. Excessive apoptosis was observed in ACTG1 knockdown groups, indicating that the absence of ACTG1 exacerbated IDD. GO function and pathway enrichment analysis for differentially expressed genes (DEGs) of two microarray datasets (GSE56081 and GSE42611) indicated that inflammatory response plays a crucial role in IDD. Interestingly, in the protein-protein interaction (PPI) network, ACTG1 is connected to the proteins of inflammation-related pathways. Furthermore, ACTG1 knockdown upregulated P-P65 level but suppressed P-Akt expression. These data collectively demonstrated that ACTG1 regulated the development of IDD through the NF-κB-p65 and Akt pathways, and ACTG1 may be a novel marker and therapeutic target of IDD in the future.


Assuntos
Actinas/genética , Actinas/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Actinas/antagonistas & inibidores , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
7.
Toxicol Lett ; 337: 46-56, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253780

RESUMO

RATIONALE: The popularity of new and emerging tobacco products such as E-cigarettes (E-cigs) is rapidly expanding worldwide. However, uncertainties surrounding the potential health consequences due to the use of such products exist and warrant further study. METHODS: Cultured A549 and Calu-3 airway epithelia were exposed to three out of the eight types of JUUL brand e-liquids ("Mint", "Virginia Tobacco" and "Menthol", all containing 3% nicotine at 1% and 3% (vol/vol) dilutions) and assessed for viability using a resazurin-based assay. Intracellular Ca2+ levels were measured using fluorescent indicators and pro-inflammatory cytokine levels were monitored by quantitative PCR (qPCR). Cultures were also analyzed by flow cytometry to evaluate apoptotic markers and cell viability. RESULTS: Exposing the airway epithelial cells to the flavored JUUL e-liquids led to significant cytotoxicity, with the "Mint" flavor being the overall most cytotoxic. The "Mint" flavored e-liquid also led to significant elevations in intracellular Ca2+ and upregulation of the pro-inflammatory cytokine IL-6 and early apoptotic marker Annexin V. CONCLUSIONS: JUUL e-liquid challenge resulted in a loss of airway epithelial cell viability, induced pro-inflammatory responses and eventually caused apoptosis.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Mucosa Respiratória/citologia , Células A549 , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Citocinas/análise , Citocinas/metabolismo , Aromatizantes/toxicidade , Humanos , Mentha , Nicotina/análise , Mucosa Respiratória/efeitos dos fármacos
8.
Int J Biol Macromol ; 164: 4022-4031, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890564

RESUMO

Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Glicoproteínas/metabolismo , Imunomodulação , Fosfoproteínas/metabolismo , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Cisteína Endopeptidases/imunologia , Inibidores de Cisteína Proteinase/farmacologia , Citocinas/metabolismo , Glicoproteínas/farmacologia , Humanos , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Fosfoproteínas/farmacologia , Proteólise/efeitos dos fármacos , Temperatura
9.
FASEB J ; 32(5): 2478-2491, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29295861

RESUMO

Cystic fibrosis (CF) is a common genetic disease with significantly increased mortality. CF airways exhibit ion transport abnormalities, including hyperactivity of the epithelial Na+ channel (ENaC). Short-palate lung and nasal epithelial clone 1 (SPLUNC1) is a multifunctional innate defense protein that is secreted into the airway lumen. We have previously demonstrated that SPLUNC1 binds to and inhibits ENaC to maintain fluid homeostasis in airway epithelia and that this process fails in CF airways. Despite this, how SPLUNC1 actually regulates ENaC is unknown. Here, we found that SPLUNC1 caused αγ-ENaC to internalize, whereas SPLUNC1 and ß-ENaC remained at the plasma membrane. Additional studies revealed that SPLUNC1 increased neural precursor cell-expressed developmentally down-regulated protein 4-2-dependent ubiquitination of α- but not ß- or γ-ENaC. We also labeled intracellular ENaC termini with green fluorescent protein and mCherry, and found that extracellular SPLUNC1 altered intracellular ENaC Forster resonance energy transfer. Taken together, our data indicate that SPLUNC1 is an allosteric regulator of ENaC that dissociates αßγ-ENaC to generate a new SPLUNC1-ß-ENaC complex. These data indicate a novel mode for regulating ENaC at the plasma membrane.-Kim, C. S., Ahmad, S., Wu, T., Walton, W. G., Redinbo, M. R., Tarran, R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Glicoproteínas/metabolismo , Complexos Multiproteicos/química , Mucosa Nasal/metabolismo , Fosfoproteínas/metabolismo , Regulação Alostérica/fisiologia , Membrana Celular/química , Membrana Celular/genética , Células Epiteliais/química , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Glicoproteínas/química , Glicoproteínas/genética , Células HEK293 , Humanos , Proteínas Luminescentes , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mucosa Nasal/química , Fosfoproteínas/química , Fosfoproteínas/genética , Proteína Vermelha Fluorescente
10.
Nat Commun ; 8: 14118, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165446

RESUMO

Asthma is a chronic airway disease characterized by inflammation, mucus hypersecretion and abnormal airway smooth muscle (ASM) contraction. Bacterial permeability family member A1, BPIFA1, is a secreted innate defence protein. Here we show that BPIFA1 levels are reduced in sputum samples from asthmatic patients and that BPIFA1 is secreted basolaterally from healthy, but not asthmatic human bronchial epithelial cultures (HBECs), where it suppresses ASM contractility by binding to and inhibiting the Ca2+ influx channel Orai1. We have localized this effect to a specific, C-terminal α-helical region of BPIFA1. Furthermore, tracheas from Bpifa1-/- mice are hypercontractile, and this phenotype is reversed by the addition of recombinant BPIFA1. Our data suggest that BPIFA1 deficiency in asthmatic airways promotes Orai1 hyperactivity, increased ASM contraction and airway hyperresponsiveness. Strategies that target Orai1 or the BPIFA1 deficiency in asthma may lead to novel therapies to treat this disease.


Assuntos
Asma/fisiopatologia , Glicoproteínas/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiopatologia , Proteína ORAI1/metabolismo , Fosfoproteínas/fisiologia , Adulto , Idoso , Animais , Brônquios/citologia , Células Epiteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glicoproteínas/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Proteína ORAI1/química , Proteína ORAI1/genética , Fosfoproteínas/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia , Escarro/fisiologia , Adulto Jovem
11.
Mol Cell Biol ; 37(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28115426

RESUMO

Activation of the stress-responsive transcription factor NRF2 is the major line of defense to combat oxidative or electrophilic insults. Under basal conditions, NRF2 is continuously ubiquitylated by the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex and is targeted to the proteasome for degradation (the canonical mechanism). However, the path from the CUL3 complex to ultimate proteasomal degradation was previously unknown. p97 is a ubiquitin-targeted ATP-dependent segregase that extracts ubiquitylated client proteins from membranes, protein complexes, or chromatin and has an essential role in autophagy and the ubiquitin proteasome system (UPS). In this study, we show that p97 negatively regulates NRF2 through the canonical pathway by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex, with the aid of the heterodimeric cofactor UFD1/NPL4 and the UBA-UBX-containing protein UBXN7, for efficient proteasomal degradation. Given the role of NRF2 in chemoresistance and the surging interest in p97 inhibitors to treat cancers, our results indicate that dual p97/NRF2 inhibitors may offer a more potent and long-term avenue of p97-targeted treatment.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ubiquitinação , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Proteólise , Transdução de Sinais , Ubiquitina/metabolismo , Proteína com Valosina
12.
Biochem Soc Trans ; 43(4): 680-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26551712

RESUMO

Nrf2 (nuclear factor erytheroid-derived-2-like 2) transcriptional programmes are activated by a variety of cellular stress conditions to maintain cellular homoeostasis. Under non-stress conditions, Nrf2 is under tight regulation by the ubiquitin proteasome system (UPS). Detailed mechanistic investigations have shown the Kelch-like ECH-associated protein 1 (Keap1)-cullin3 (Cul3)-ring-box1 (Rbx1) E3-ligase to be the primary Nrf2 regulatory system. Recently, both beta-transducin repeat-containing E3 ubiquitin protein ligase (ß-TrCP) and E3 ubiquitin-protein ligase synoviolin (Hrd1) have been identified as novel E3 ubiquitin ligases that negatively regulate Nrf2 through Keap1-independent mechanisms. In addition to UPS-mediated regulation of Nrf2, investigations have revealed a cross-talk between Nrf2 and the autophagic pathway resulting in activation of Nrf2 in a non-canonical manner. In addition to regulation at the protein level, Nrf2 was recently shown to be regulated at the transcriptional level by oncogenic K-rat sarcoma (Ras). A consequence of these differential regulatory mechanisms is the dual role of Nrf2 in cancer: the canonical, protective role and the non-canonical 'dark-side' of Nrf2. Based on the protective role of Nrf2, a vast effort has been dedicated towards identifying novel chemical inducers of Nrf2 for the purpose of chemoprevention. On the other hand, upon malignant transformation, some cancer cells have a constitutively high level of Nrf2 offering a growth advantage, as well as rendering cancer cells resistant to chemotherapeutics. This discovery has led to a new paradigm in cancer treatment; the initially counterintuitive use of Nrf2 inhibitors as adjuvants in chemotherapy. Herein, we will discuss the mechanisms of Nrf2 regulation and how this detailed molecular understanding can be leveraged to develop Nrf2 modulators to prevent diseases, mitigate disease progression or overcome chemoresistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Animais , Autofagia , Resistencia a Medicamentos Antineoplásicos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
13.
ACS Chem Biol ; 10(8): 1916-1924, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26006219

RESUMO

Understanding the mode of action (MOA) of many natural products can be puzzling with mechanistic clues that seem to lack a common thread. One such puzzle lies in the evaluation of the antitumor properties of the natural product withaferin A (WFA). A variety of seemingly unrelated pathways have been identified to explain its activity, suggesting a lack of selectivity. We now show that WFA acts as an inhibitor of the chaperone, p97, both in vitro and in cell models in addition to inhibiting the proteasome in vitro. Through medicinal chemistry, we have refined the activity of WFA toward p97 and away from the proteasome. Subsequent studies indicated that these WFA analogs retained p97 activity and cytostatic activity in cell models, suggesting that the modes of action reported for WFA could be connected by proteostasis modulation. Through this endeavor, we highlight how the parallel integration of medicinal chemistry with chemical biology offers a potent solution to one of natures' intriguing molecular puzzles.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Vitanolídeos/química , Vitanolídeos/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Mol Carcinog ; 54(11): 1494-502, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25154499

RESUMO

Mammosphere culture of breast cancer cell lines is an important approach used for enrichment of cancer stem cells (CSCs), which exhibit high tumorigenicity and chemoresistance features. Evidence shows that CSCs maintain lower ROS levels due to elevated expression of ROS-scavenging molecules and antioxidative enzymes, which favors the survival of the CSCs and their chemoresistance. The transcription factor NF-E2-related factor 2 (Nrf2) has emerged as the master regulator of cellular redox homeostasis, by up-regulating antioxidant response element (ARE)-bearing genes products. Although Nrf2 has long-term been regarded as a beneficial defense mechanism, accumulating studies have revealed the "dark side" of Nrf2. High constitutive levels of Nrf2 was observed in many types of tumors and cancer cell lines promoting their resistance to chemotherapeutics. In this study, we report a high expression of Nrf2 and its target genes in mammospheres compared to corresponding adherent cells. In MCF-7 and MDA-MB-231 mammmosphere cells, the Nrf2-mediated cellular protective response is significantly elevated which is associated with increased resistance to taxol and anchorage-independent growth. Brusatol, an inhibitor of the Nrf2 pathway, suppressed the protein level of Nrf2 and its target genes, enhanced intracellular ROS and sensitized mammospheres to taxol, and reduced the anchorage-independent growth. These results suggest that mammospheres rely on abnormal up-regulation of Nrf2 to maintain low intracellular ROS levels. Nrf2 inhibitors, such as brusatol, have the potential to be developed into novel adjuvant chemotherapeutic drug combinations in order to combat refractory tumor initiating CSCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Paclitaxel/farmacologia , Elementos de Resposta Antioxidante/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Drug Metab Dispos ; 43(1): 93-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349122

RESUMO

The ATP-binding cassette (ABC) family of transporters, including ABCC3, is a large family of efflux pumps that plays a pivotal role in the elimination of xenobiotics from the body. ABCC3 has been reported to be induced during hepatic stress conditions and through the progression of some forms of cancer. Several lines of evidence have implicated the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in this induction. However, although rodent models have been investigated, a functional antioxidant response element (ARE) in the human ABCC3 gene has not been identified. The purpose of this study was to identify and characterize the ARE(s) responsible for mediating the Nrf2-dependent induction of the human ABCC3 gene. A high-throughput chromatin immunoprecipitation-sequencing analysis performed in A549 cells revealed a specific interaction between Nrf2 and the eighth intron of the human ABCC3 gene rather than the more prototypical flanking region of the gene. Subsequent in silico analysis of the intron identified two putative ARE elements that contained the core consensus ARE sequence commonly found in several Nrf2-responsive genes. Functional characterization of these two AREs using luciferase-reporter constructs with ARE mutant constructs revealed that one of these putative AREs is functionally active. Finally, DNA pull-down assays confirmed specific binding of these intronic AREs by Nrf2 in vitro. Our findings identify a functional Nrf2 response element within the eighth intron of the ABCC3 gene, which may provide mechanistic insight into the induction of ABCC3 during antioxidant response stimuli.


Assuntos
Elementos de Resposta Antioxidante/genética , Íntrons/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Humanos , Fator 2 Relacionado a NF-E2/genética , Fatores de Transcrição/genética
16.
Chembiochem ; 15(14): 2125-31, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25125376

RESUMO

Access to lead compounds with defined molecular targets continues to be a barrier to the translation of natural product resources. As a solution, we developed a system that uses discrete, recombinant proteins as the vehicles for natural product isolation. Here, we describe the use of this functional chromatographic method to identify natural products that bind to the AAA+ chaperone, p97, a promising cancer target. Application of this method to a panel of fungal and plant extracts identified rheoemodin, 1-hydroxydehydroherbarin, and phomapyrrolidone A as distinct p97 modulators. Excitingly, each of these molecules displayed a unique mechanism of p97 modulation. This discovery provides strong support for the application of functional chromatography to the discovery of protein modulators that would likely escape traditional high-throughput or phenotypic screening platforms.


Assuntos
Adenosina Trifosfatases/metabolismo , Produtos Biológicos/farmacologia , Proteínas Nucleares/metabolismo , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cromatografia/métodos , Descoberta de Drogas/métodos , Fungos/química , Humanos , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Plantas/química
17.
Free Radic Biol Med ; 67: 69-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24140708

RESUMO

The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.


Assuntos
Fator de Transcrição MafG/genética , Fator 2 Relacionado a NF-E2/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas Repressoras/genética , Transcrição Gênica , Animais , Elementos de Resposta Antioxidante , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Fator de Transcrição MafG/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais
18.
Mol Cell ; 51(1): 68-79, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727018

RESUMO

Nrf2 is a master regulator of the antioxidant response. Under basal conditions, Nrf2 is polyubiquitinated by the Keap1-Cul3 E3 ligase and degraded by the 26S proteasome. In response to Nrf2 inducers there is a switch in polyubiquitination from Nrf2 to Keap1. Currently, regulation of the Nrf2-Keap1 pathway by ubiquitination is largely understood. However, the mechanism responsible for removal of ubiquitin conjugated to Nrf2 or Keap1 remains unknown. Here we report that the deubiquitinating enzyme, USP15, specifically deubiquitinates Keap1, which suppresses the Nrf2 pathway. We demonstrated that deubiquitinated Keap1 incorporates into the Keap1-Cul3-E3 ligase complex more efficiently, enhancing the complex stability and enzymatic activity. Consequently, there is an increase in Nrf2 protein degradation and a reduction in Nrf2 target gene expression. Furthermore, USP15-siRNA enhances chemoresistance of cells through upregulation of Nrf2. These findings further our understanding of how the Nrf2-Keap1 pathway is regulated, which is imperative in targeting this pathway for chemoprevention or chemotherapy.


Assuntos
Endopeptidases/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Paclitaxel/farmacologia , Proteases Específicas de Ubiquitina , Ubiquitinação
19.
Mol Cell Biol ; 32(8): 1506-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331464

RESUMO

PALB2/FANCN is mutated in breast and pancreatic cancers and Fanconi anemia (FA). It controls the intranuclear localization, stability, and DNA repair function of BRCA2 and links BRCA1 and BRCA2 in DNA homologous recombination repair and breast cancer suppression. Here, we show that PALB2 directly interacts with KEAP1, an oxidative stress sensor that binds and represses the master antioxidant transcription factor NRF2. PALB2 shares with NRF2 a highly conserved ETGE-type KEAP1 binding motif and can effectively compete with NRF2 for KEAP1 binding. PALB2 promotes NRF2 accumulation and function in the nucleus and lowers the cellular reactive oxygen species (ROS) level. In addition, PALB2 also regulates the rate of NRF2 export from the nucleus following induction. Our findings identify PALB2 as a regulator of cellular redox homeostasis and provide a new link between oxidative stress and the development of cancer and FA.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias/patologia , Oxirredução , Estresse Oxidativo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
20.
Proc Natl Acad Sci U S A ; 108(4): 1433-8, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205897

RESUMO

The major obstacle in cancer treatment is the resistance of cancer cells to therapies. Nrf2 is a transcription factor that regulates a cellular defense response and is ubiquitously expressed at low basal levels in normal tissues due to Keap1-dependent ubiquitination and proteasomal degradation. Recently, Nrf2 has emerged as an important contributor to chemoresistance. High constitutive expression of Nrf2 was found in many types of cancers, creating an environment conducive for cancer cell survival. Here, we report the identification of brusatol as a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells and A549 xenografts to cisplatin and other chemotherapeutic drugs. Mechanistically, brusatol selectively reduces the protein level of Nrf2 through enhanced ubiquitination and degradation of Nrf2. Consequently, expression of Nrf2-downstream genes is reduced and the Nrf2-dependent protective response is suppressed. In A549 xenografts, brusatol and cisplatin cotreatment induced apoptosis, reduced cell proliferation, and inhibited tumor growth more substantially when compared with cisplatin treatment alone. Additionally, A549-K xenografts, in which Nrf2 is expressed at very low levels due to ectopic expression of Keap1, do not respond to brusatol treatment, demonstrating that brusatol-mediated sensitization to cisplatin is Nrf2 dependent. Moreover, a decrease in drug detoxification and impairment in drug removal may be the primary mechanisms by which brusatol enhances the efficacy of chemotherapeutic drugs. Taken together, these results clearly demonstrate the effectiveness of using brusatol to combat chemoresistance and suggest that brusatol can be developed into an adjuvant chemotherapeutic drug.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Quassinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Glutationa/metabolismo , Células HeLa , Humanos , Immunoblotting , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Quassinas/administração & dosagem , Quassinas/química , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA