Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biomark Res ; 11(1): 104, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037114

RESUMO

Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.

2.
Cell Biol Toxicol ; 39(6): 3101-3119, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37853185

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS: We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS: GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS: In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Interleucina-7 , Glipicanas , Linhagem Celular Tumoral , Microambiente Tumoral , Quimiocina CCL19
3.
Cell Signal ; 104: 110565, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36539000

RESUMO

Metastasis is a landmark event for rapid postsurgical relapse and death of HCC patients. Although distinct genomic and transcriptomic profiling of HCC metastasis had been reported previously, the causal relationships of somatic mutants, mRNA levels and metastatic potentials were difficult to be established in clinic. Therefore, 11 human HCC cell lines and 7 monoclonal derivatives with definite metastatic potentials and tropisms were subjected to whole exome sequencing (WES) and whole transcriptome sequencing (WTS). TP53, MYO5A, ROS1 and ARID2 were the prominent mutants of metastatic drivers in HCC cells. During HCC clonal evaluation, TP53, MYO5A and ROS1 mutations occurred in the early stage, EXT2 and NIN in the late stage. NF1 mutant was unique in lung tropistic cell lines, RNF126 mutant in lymphatic tropistic ones. PER1, LMO2, GAS7, NR4A3 expression levels were positively associated with relapse-free survival (RFS) of HCC patients. The integrative analysis revealed 58 genes exhibited both somatic mutation and dysregulated mRNA levels in high metastatic cells. Altogether, metastatic drivers could accumulate gradually at different stages during HCC progression, some drivers might modulate HCC metastatic potentials and the others regulate metastatic tropisms.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Proteínas Tirosina Quinases/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas/metabolismo , Genômica , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
J Hematol Oncol ; 13(1): 44, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366313

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

5.
Cell Signal ; 72: 109650, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32320856

RESUMO

Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice. Brahma-related gene-1 (Brg1), as the target protein of miR-296-5p detected by bioinformatics methods, activates a series of downstream cascades through directly binding to Sall4 promoter and enhancing Sall4 transcription. Importantly, the higher expressions of Brg1 and Sall4 in tumor tissues of HCC patients suggest poorer prognoses after surgical extraction. In conclusion, miR-296-5p exerts an inhibitory effect on stemness potency of HCC cells via Brg1/Sall4 axis.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , DNA Helicases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Antígenos Thy-1/metabolismo
6.
Theranostics ; 10(8): 3668-3683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206115

RESUMO

Dysregulation of microRNA (miRNA) is a frequent event in hepatocellular carcinoma (HCC), but little is known whether it is a bystander or an actual player on residual HCC metastasis during liver microenvironment remodeling initiated by hepatectomy. Methods: The differently expressed miRNAs and mRNAs were identified from RNA-seq data. Western blot, qRT-PCR, fluorescence in situ hybridization, immunofluorescence and immunohistochemical were used to detect the expression of miRNA and mRNA in cell lines and patient tissues. The biological functions were investigated in vitro and in vivo. Chromatin immunoprecipitation, proximity ligation and luciferase reporter assay were used to explore the specific binding of target genes. The expression of HGF/ERBB3 signaling was detected by Western blot. Results: In this study, HGF induced by hepatectomy was shown to promote metastasis of residual HCC cells. miR-17-5p and miR-20a-5p were confirmed to play inhibitory roles on HCC metastasis. And ERBB3 was found to be the common target of miR-17-5p and miR-20a-5p. HCC cells with lower levels of miR-17-5p and miR-20a-5p or higher level of ERBB3 were often more sensitive to response HGF stimuli and to facilitate metastatic colonization both in vitro and in vivo experimental systems. Furthermore, HGF reinforced ERBB3 expression by NF-κB transcriptional activity in a positive feedback loop. Of particular importance, HCC patients with lower levels of miR-17-5p and miR-20a-5p or higher level of ERBB3 had significantly shorter OS and PFS survivals after surgical resection. Conclusion: miR-17-5p and miR-20a-5p could suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop and offer a new probable strategy for metastasis prevention after HCC resection.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/fisiologia , Metástase Neoplásica , Transdução de Sinais , Animais , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatectomia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptor ErbB-3/metabolismo
7.
J Hematol Oncol ; 13(1): 12, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033570

RESUMO

BACKGROUND: MicroRNA-612 (miR-612) has been proven to suppress EMT, stemness, and tumor metastasis of hepatocellular carcinoma (HCC) via PI3K/AKT2 and Sp1/Nanog signaling. However, its biological roles on HCC progression are far from elucidated. METHODS: We found direct downstream target of miR-612, hadha by RNA immunoprecipitation and sequencing. To explore its biological characteristic, potential molecular mechanism, and clinical relevance in HCC patients, we performed several in-vitro and in-vivo models, as well as human tissue chip. RESULTS: Ectopic expression of miR-612 could partially reverse the level of HADHA, then suppress function of pseudopods, and diminish metastatic and invasive potential of HCC by lipid reprogramming. In detail, miR-612 might reduce invadopodia formation via HADHA-mediated cell membrane cholesterol alteration and accompanied with the inhibition of Wnt/ß-catenin regulated EMT occurrence. Our results showed that the maximum oxygen consumption rates (OCR) of HCCLM3miR-612-OE and HCCLM3hadha-KD cells were decreased nearly by 40% and 60% of their counterparts (p < 0.05). The levels of acetyl CoA were significantly decreased, about 1/3 (p > 0.05) or 1/2 (p < 0.05) of their controls, in exogenous miR-612 or hadha-shRNA transfected HCCLM3 cell lines. Besides, overexpression of hadha cell lines had a high expression level of total cholesterol, especially 27-hydroxycholesterol (p < 0.005). SREBP2 protein expression level as well as its downstream targets, HMGCS1, HMGCR, MVD, SQLE were all deregulated by HADHA. Meanwhile, the ATP levels were reduced to 1/2 and 1/4 in HCCLM3miR-612-OE (p < 0.05) and HCCLM3hadha-KD (p < 0.01) respectively. Moreover, patients with low miR-612 levels and high HADHA levels had a poor prognosis with shorter overall survival. CONCLUSION: miR-612 can suppress the formation of invadopodia, EMT, and HCC metastasis and by HADHA-mediated lipid programming, which may provide a new insight of miR-612 on tumor metastasis and progression.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Podossomos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Podossomos/patologia
8.
Int J Cancer ; 146(1): 169-180, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31090062

RESUMO

Our previous study demonstrated that heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) is a key gene that facilitates metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms behind this relationship are not fully understood. In our study, we utilized long-noncoding RNA (lncRNA) microarrays to identify a HNRNPAB-regulated lncRNA named lnc-ELF209. Our findings from chromatin immunoprecipitation assays indicate that HNRNPAB represses lnc-ELF209 transcription by directly binding to its promoter region. We also analyzed clinical samples from HCC patients and cell lines with quantitative real-time polymerase chain reactions, RNA in situ hybridization and immunohistochemistry, and found that there is a negative relationship between HNRNPAB and lnc-ELF209 expression. Up/downregulation assays and rescue assays indicate that lnc-ELF209 inhibits cell migration, invasion and epithelial-mesenchymal transition regulated by HNRNPAB. This suggests a new regulatory mechanism for HNRNPAB-promoted HCC progression. RNA pull-down and LC-MS/MS were used to determine triosephosphate isomerase, heat shock protein 90-beta and vimentin may be involved in the tumor-suppressed function of lnc-ELF209. Furthermore, we found lnc-ELF209 could stabilize TPI protein expression. We also found that lnc-ELF209 overexpression in HCCLM3 cell resulted in a lower rate of lung metastatic, which suggested a less aggressive HCC phenotype. Collectively, these findings offer new insights into the regulatory mechanisms that underlie HNRNPAB cancer-promoting activities and demonstrate that lnc-ELF209 is a HNRNPAB-regulated lncRNA that may play an important role in the inhibition of HCC progression.


Assuntos
Carcinoma Hepatocelular/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/fisiologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/fisiologia , Animais , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Metástase Neoplásica/genética
9.
J Cancer ; 10(20): 4777-4792, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598149

RESUMO

Background: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells. Methods: We used 98% purified fucoidan from Sargassum species to treat the hepatocellular carcinoma (HCC) cells SMMC-7721, Huh7 and HCCLM3 in vitro and the HCCLM3 cell line in vivo. The HCC cells were cultured with various concentrations of Fucoidan-Sargassum (0-30 mg/mL). Migration, invasion and wound healing assays were performed to determine the antimetastatic effect of fucoidan on the HCC cells. Western blot analysis and immunofluorescence staining were conducted to determine the expression levels of invadopodia formation-regulating proteins and the targeting membrane receptor proteins. Results: Fucoidan-Sargassum inhibited the migration and invasion of HCC SMMC-7721, Huh7 and HCCLM3 cells in a dose-dependent manner. In the HCCLM3 cells, Fucoidan-Sargassum also decreased the expression levels of invadopodia-related proteins including Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP, and the targeting receptors integrin αV and ß3 in a dose-dependent manner. Fucoidan-Sargassum also increased the levels of endoplasmic reticulum-related proteins, including GRP78, IRE1, SPARC, and the type IV collagen receptor proteins integrin α1 and ß1. In vivo, Fucoidan-Sargassum reduced the size of liver tumors and decreased the number of lung metastatic foci in nude mice with hepatocellular carcinoma xenografts. Conclusion: These findings indicate that Fucoidan-Sargassum has an antimetastatic effect on SMMC-7721, Huh7 and HCCLM3 liver cancer cells, and the underlying mechanism involves targeting ITGαVß3 and mediating the ITGαVß3/SRC/E2F1 signaling pathway. These results suggest that Fucoidan-Sargassum may be a promising therapeutic antimetastatic compound in the development of a metastasis-preventive drug for treating liver cancer.

10.
Theranostics ; 9(16): 4779-4794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367257

RESUMO

Natural killer (NK) cell can inhibit tumor initiation and regulates metastatic dissemination, acting as key mediators of the innate immune response. Intrinsic factors modulating NK cells infiltration and its anticancer activity remain poorly characterized. We investigated the roles of dysregulation of micro(mi)RNAs and NK cells in progression of hepatocellular carcinoma (HCC). Methods: Small RNA sequencing were used to detect the miRNA profiles of tumor tissues from HCC patients with (n=14) or without (n=13) pulmonary metastasis and HCC cell lines with different pulmonary metastatic potentials. Chemokine expression profiling and bioinformatics were used to detect the downstream target of candidate target. In gain- and loss-of-function assays were used to investigate the role of miRNA in HCC progression. Different subsets of NK cells were isolated and used for chemotaxis and functional assays in vivo and in vitro. In situ hybridization and immunohistochemical analyses were performed to detect the expression of miRNA in tumor tissues from 242 HCC patients undergoing curative resection from 2010. Results: Three miRNAs (miR-137, miR-149-5p, and miR-561-5p) were identified to be associated with pulmonary metastasis in patients with HCC. miR-561-5p was most highly overexpressed in metastatic HCC tissues and high-metastatic-potential HCC cell lines. In gain- and loss-of-function assays in a murine model, miR-561-5p promoted tumor growth and spread to the lungs. Yet, miR-561-5p did not appear to affect cellular proliferation and migration in vitro. Bioinformatics and chemokine expression profiling identified chemokine (C-X3-C motif) ligand 1 (CX3CL1) as a potential target of miR-561-5p. Furthermore, miR-561-5p promoted tumorigenesis and metastasis via CX3CL1-dependent regulation of CX3CR1+ NK cell infiltration and function. CX3CR1+ NK cells demonstrated stronger in vivo anti-metastatic activity relative to CX3CR1- NK cells. CX3CL1 stimulated chemotactic migration and cytotoxicity in CX3CR1+ NK cells via STAT3 signaling. Blockade of CX3CL1, CX3CR1, or of pSTAT3 signaling pathways attenuated the antitumor responses. Clinical samples exhibited a negative correlation between miR-561-5p expression and levels of CX3CL1 and CX3CR1+ NK cells. High miR-561-5p abundance, low CX3CL1 levels, and low numbers of CX3CR1+ NK cells were associated with adverse prognosis. Conclusion: We delineated a miR-561-5p/CX3CL1/NK cell axis that drives HCC metastasis and demonstrated that CX3CR1+ NK cells serve as potent antitumor therapeutic effectors.


Assuntos
Carcinoma Hepatocelular/imunologia , Quimiocina CX3CL1/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Pulmonares/secundário , MicroRNAs/imunologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Quimiocina CX3CL1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Metástase Neoplásica , Transdução de Sinais
11.
J Exp Clin Cancer Res ; 37(1): 294, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486894

RESUMO

BACKGROUND: Accumulation of evidence indicates that miRNAs have crucial roles in the regulation of EMT-associated properties, such as proliferation, migration and invasion. However, the underlying molecular mechanisms are not entirely illustrated. Here, we investigated the role of miR-296-5p in hepatocellular carcinoma (HCC) progression. METHODS: In vitro cell morphology, proliferation, migration and invasion were compared between HCC cell lines with up- or down-regulation of miR-296-5p. Immunofluorescence and Western blot immunofluorescence assays were used to detect the expression of EMT markers. Bioinformatics programs, luciferase reporter assay and rescue experiments were used to validate the downstream targets of miR-296-5p. Xenograft nude mouse models were established to observe tumor growth and metastasis. Immunohistochemical assays were conducted to study the relationships between miR-296-5p expression and Neuregulin-1 (NRG1)/EMT markers in human HCC samples and mice. RESULTS: miR-296-5p was prominently downregulated in HCC tissues relative to adjacent normal liver tissues and associated with favorable prognosis. Overexpression of miR-296-5p inhibited EMT along with migration and invasion of HCC cells via suppressing NRG1/ERBB2/ERBB3/RAS/MAPK/Fra-2 signaling in vitro. More importantly, miR-296-5p disrupted intrahepatic and pulmonary metastasis in vivo. NRG1, as a direct target of miR-296-5p, mediates downstream biological responses. In HCC tissues from patients and mice, the levels of miR-296-5p and NRG1 also showed an inverse relationship. CONCLUSIONS: miR-296-5p inhibited EMT-related metastasis of HCC through NRG1/ERBB2/ERBB3/RAS/MAPK/Fra-2 signaling.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neuregulina-1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Transdução de Sinais , Transfecção
12.
Med Sci Monit ; 24: 6405-6413, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208371

RESUMO

BACKGROUND Colorectal cancer is one of the leading causes of death in China, and the development of effective drugs is urgently needed. Here, we report on Paeoniflorin (PF), a product isolated from the roots of the peony plant, as a possible candidate because of its anti-tumor effects on epithelial-to-mesenchymal transition (EMT) of PF in human colorectal cancer (CRC). MATERIAL AND METHODS Cell proliferation, wound healing, and Transwell assays were used to analyze the effects of PF on in vitro cell migration and invasion of HCT116 and SW480, 2 colorectal cancer cell lines. The tumor xenograft model was used to verify the anti-metastasis effects of PF in vivo. The RNA and protein levels of epithelia-cadherin (E-cadherin), Vimentin, and histone deacetylase2 (HDAC2) were measured by qPCR and Western blot analysis to explore the mechanism involved. RESULTS Our results showed that PF inhibited colorectal cancer cell migration and invasion and suppressed the metastatic potential of the cancer cells in vivo. Moreover, PF significantly decreased the expression of HDAC2 and Vimentin, while increasing the expression of E-cadherin. CONCLUSIONS These results suggest that PF inhibits colorectal cancer cell migration and invasion ability and reverses the EMT process, through inhibiting the expression of HDAC2, and then affects the expression level of E-cadherin and Vimentin at the cell level. Our results were also verified in the tumor xenograft model. This indicates that PF may be a candidate for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Animais , Caderinas/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , China , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Vimentina/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Onco Targets Ther ; 11: 571-585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416358

RESUMO

BACKGROUND: The miRNA miR-106b-5p has been previously reported to be increased in hepatocellular carcinoma (HCC) tissues compared to cirrhotic tissues. The purpose of this study was to detect its expression in HCC cell lines with distinct metastatic potentials and to explore the molecular mechanisms underlying HCC stemness and migration. METHODS: miR-106b-5p expression was studied in HCC tissues and cell lines. In vitro cancer stem cell (CSC)-like properties, cell migration and invasion were compared between HCC cell lines with upregulation or downregulation of miR-106b-5p. In vivo tail vein injection models were established to evaluate the role of miR-106b-5p in lung metastasis. Bioinformatics programs, luciferase reporter assay and rescue experiments were used to validate the downstream targets of miR-106b-5p. The relationship between the expression of the targeted gene and clinicopathological parameters was also analyzed. RESULTS: miR-106b-5p expression was higher in HCC tissues and cell lines than that in non-tumor tissues and hepatocyte Chang liver, respectively. Upregulation of miR-106b-5p exhibited a promoting role in CSC properties, cell migration and activation of phosphatidylinositol-3 kinase (PI3K)/Akt signaling in vitro, as well as in lung metastasis in vivo. However, downregulation of miR-106b-5p exhibited the opposite effect. Furthermore, PTEN was verified as a direct target of miR-106b-5p. Upon clinicopathological analysis, lower level of PTEN was significantly associated with more aggressive characteristics. Patients with high PTEN expression had longer overall survival and disease-free survival. CONCLUSION: miR-106b-5p promotes HCC stemness maintenance and metastasis by targeting PTEN via PI3K/Akt pathway. Inhibition of miR-106b-5p might be effective therapeutic strategies to treat advanced HCC.

14.
J Exp Clin Cancer Res ; 36(1): 166, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169374

RESUMO

BACKGROUND: Drug resistance is one of the major concerns in the treatment of hepatocellular carcinoma (HCC). The aim of the present study was to determine whether aberrant high expression of the inhibitor of differentiation 1(ID1) confers oxaliplatin-resistance to HCC by activating the pentose phosphate pathway (PPP). METHODS: Aberrant high expression of ID1 was detected in two oxaliplatin-resistant cell lines MHCC97H-OXA(97H-OXA) and Hep3B-OXA(3B-OXA). The lentiviral shRNA or control shRNA was introduced into the two oxaliplatin-resistant cell lines. The effects of ID1 on cell proliferation, apoptosis and chemoresistance were evaluated in vitro and vivo. The molecular signaling mechanism underlying the induction of HCC proliferation and oxaliplatin resistance by ID1 was explored. The prognostic value of ID1/G6PD signaling in HCC patients was assessed using the Cancer Genome Atlas (TCGA) database. RESULTS: ID1 was upregulated in oxaliplaitin-resistant HCC cells and promoted HCC cell proliferation and oxaliplatin resistance. Silencing ID1 expression in oxaliplaitin-resistant HCC cell lines inhibited cell proliferation and sensitized oxaliplaitin-resistant cells to death. ID1 knockdown significantly decreased the expression of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the PPP. Silencing ID1 expression blocked the activation of G6PD, decreased the production of PPP NADPH, and augmented reactive oxygen and species (ROS), thus inducing cell apoptosis. Study of the molecular mechanism showed that ID1 induced G6PD promoter transcription and activated PPP through Wnt/ß-catenin/c-MYC signaling. In addition, ID1/G6PD signaling predicted unfavorable prognosis of HCC patients on the basis of TCGA. CONCLUSIONS: Our study provided the first evidence that ID1 conferred oxaliplatin resistance in HCC by activating the PPP. This newly defined pathway may have important implications in the research and development of new more effective anti-cancer drugs.


Assuntos
Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , Proteína 1 Inibidora de Diferenciação/genética , Neoplasias Hepáticas/metabolismo , Compostos Organoplatínicos/farmacologia , Via de Pentose Fosfato , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Transplante de Neoplasias , Oxaliplatina , Prognóstico , Transdução de Sinais , Regulação para Cima
15.
Oncotarget ; 8(32): 52488-52500, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881746

RESUMO

Prostate-derived E-twenty-six (ETS) factor (PDEF), an epithelium-specific ETS transcription factor, regulates carcinogenesis and tumor progression. The prognostic importance and biologic functions in hepatocellular carcinoma (HCC) have not been established. We investigated PDEF expression in 400 HCC patients using quantitative real-time polymerase chain reaction, western blot and immunohistochemistry analysis. PDEF expression was significantly lower in tumors than in peritumoral tissues. Lower PDEF levels were associated with poorer prognosis in patients. PDEF was an independent predictor of overall survival in multivariate analysis. PDEF expression was suppressed in highly metastatic HCC cell lines, and shRNA-mediated down-regulation of PDEF in low-metastatic HCC cell lines (with high PDEF) significantly increased cellular proliferative and invasive capacity in vitro and in vivo. RNA sequencing analysis indicated that PDEF may mediate transcription of several genes involved in apoptosis and the cell cycle. PDEF modulated epithelial-mesenchymal transition by up-regulating E-cadherin expression and down-regulating Slug and Vimentin expression, thereby lowering migration and invasion abilities of HCC cells. In conclusion, PDEF is associated with proliferation and invasiveness of HCC cells. It may serve as an independent predictor of prognosis in patients with HCC.

16.
Oncol Lett ; 14(3): 2852-2858, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28928824

RESUMO

Isobavachalcone (2',4',4-trihydroxy-3'-[3'-methylbut-3'-ethyl] chalcone or IBC) exhibits anticancer activities in a number of types of cancer cell. However, its role in tongue squamous cell carcinoma (TSCC) cells remains unclear. The aim of the present study was to investigate the biological effect of IBC in TSCC Tca8113 cells. The function of IBC on Tca8113 cell apoptosis and apoptosis-associated signaling pathways was determined using an MTT assay, morphological staining, annexin V-propidium iodide (PI) staining and Western blot analysis. The effects of IBC on Tca8113 cell migration, invasion and relative protein expression were confirmed using wound healing analysis, Transwell invasion analysis and Western blot analysis, respectively. The results of the MTT assay and annexin V-PI staining indicated that IBC is able to significantly inhibit proliferation and induce apoptosis of Tca8113 cells in vitro. IBC treatment resulted in typical apoptotic morphology of nuclear fragmentation and apoptotic bodies in Tca8113 cells. Western blot analysis further demonstrated that IBC caused downregulation of the expression of B-cell lymphoma 2 (Bcl-2) protein, upregulation of the expression of Bcl-2-associated X protein (Bax), activation of caspases, and dephosphorylation of protein kinase B (Akt) and extracellular-signal-regulated kinase (ERK) proteins in a concentration- and time-dependent manner. The results of the present study suggest that IBC induces apoptosis in Tca8113 cells and that the induction may be associated with the activation of Bcl-2, Bax and caspase-3, and the inactivation of Akt and ERK. Furthermore, IBC inhibited migration and invasion of Tca8113 cells in vitro by downregulating matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. The results of the present study indicate that IBC may be a potential anticancer drug for the treatment of TSCC.

17.
Cell Death Dis ; 7(9): e2377, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27685621

RESUMO

In our previous study we found that miR-612 negatively regulated stem cell-like property and tumor metastasis of hepatocellular carcinoma cells (HCC). In this study, we try to elucidate underlying mechanism of the regulation, and find that miR-612 inversely modulate the mRNA and protein level of epithelial cell adhesion molecule as well as CD133, negatively regulate the numbers and sizes of tumor spheres, directly inhibit the protein level of Sp1, and subsequently reduce transcription activity of Nanog. Of importance, the higher levels of Sp1 and Nanog in biopsies are the more unfavorable prognoses of HCC patients are found after tumor resection. Taken together, miR-612 has a suppressive role on HCC stemness via Sp1/Nanog signaling pathway.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/genética , Fator de Transcrição Sp1/metabolismo , Antígeno AC133/metabolismo , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proteína Homeobox Nanog/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Hematol Oncol ; 8: 23, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25879771

RESUMO

BACKGROUND: Oct4 and Nanog are key regulatory genes that maintain the pluripotency and self-renewal properties of embryonic stem cells. We previously reported that the two stemness markers were tightly associated with cancer progression and poor outcomes of hepatocellular carcinoma. In this study, we demonstrate that coexpression of Oct4/Nanog modulates activation of signal transducer and activator of transcription 3 (Stat3), an oncogenic transcription factor that is activated in many human malignancies including hepatocellular carcinoma (HCC), as well as the expression of Snail, a key regulator implicated in epithelial-mesenchymal transition and tumor metastasis. METHODS: Oct4 and Nanog were ectopic expressed in MHCC97-L cell lines via lentiviral gene transfection. The stemness characteristics including self-renewal, proliferation, chemoresistance, and tumorigenicity were assessed. The effect of coexpression of Oct4 and Nanog on epithelial-mesenchymal transition change, and the underlying molecular signaling was investigated. RESULTS: Ectopic coexpression of Oct4 and Nanog empowered MHCC97-L cells with cancer stem cell (CSC) properties, including self-renewal, extensive proliferation, drug resistance, and high tumorigenic capacity. Significantly, Oct4 and Nanog encouraged epithelial-mesenchymal transition change contributing to tumor migration, invasion/metastasis in vitro and in vivo. Following molecular mechanism investigation indicated Oct4/Nanog-regulated epithelial-mesenchymal transition change through Stat3-dependent Snail activation. Moreover, silencing Stat3 abrogates Oct4/Nanog-mediated epithelial-mesenchymal transition (EMT) change and invasion/metastasis in HCC. CONCLUSIONS: We delineate Oct4 and Nanog initiate stem cell characteristics in hepatocellular carcinoma and promote epithelial-mesenchymal transition through activation of Stat3/Snail signaling. Our findings propose Stat3/Snail pathway as a novel therapeutic target for the treatment of progression and metastasis of HCC with CSC-like signatures and epithelial-mesenchymal transition phenotype.


Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Transdução de Sinais , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Imunofluorescência , Xenoenxertos , Humanos , Imunoprecipitação , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Transfecção
19.
Mol Cell Biochem ; 397(1-2): 131-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138701

RESUMO

Stromal derived factor (SDF)-1 has been confirmed to regulate angiogenesis in choroidal neovascularization formation via its two receptors, CXC chemokine receptors 4 (CXCR4) and 7 (CXCR7). Previous studies found that there is cross-talk between the transforming growth factor beta (TGF-ß) and SDF-1 pathways in some types of immune or tumor cells, but much less is known about this interaction in endothelial cells. This study investigated the effects of TGF-ß1 on CXCR4 and CXCR7 expression as well as SDF-1-induced migration and tube formation in choroid-retinal endothelial (RF/6A) cells. RF/6A cells were treated with recombinant TGF-ß1 at various concentrations and time points. Real-time PCR and Western blotting were used to examine the mRNA and protein levels of CXCR4 and CXCR7. In addition, transwell migration and Matrigel tube formation analyses were performed to investigate the role of TGF-ß1 pretreatment in SDF-1-induced RF/6A cell migration and tube formation. Our results showed that treatment with recombinant human TGF-ß1 enhanced the CXCR4 and CXCR7 levels in time- and dose-dependent manners. The increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cell migration and tube formation. In addition, the transcriptional regulation of CXCR4 and CXCR7 by TGF-ß1 was found to be mediated by phosphorylation of the extracellular signal-related kinase1/2 pathway. Altogether, these results demonstrate that a cross-talk exists between the TGF-ß1 and SDF-1 pathways in choroid-retinal endothelial cells, reflecting a novel molecular mechanism that explains the pro-angiogenic effects of TGF-ß1 and possibly provides new perspectives for the treatment of CNV-associated diseases.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/biossíntese , Corioide/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/biossíntese , Retina/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Corioide/citologia , Células Endoteliais/citologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macaca mulatta , Retina/citologia
20.
J Pathol ; 234(3): 316-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24962955

RESUMO

Calpain small subunit 1 (Capn4) has been identified as a major gene that promotes metastasis of hepatocellular carcinoma (HCC). However, the mechanism by which Capn4 promotes progression of HCC is not understood. In this study, we found that Capn4 expression was increased in highly metastatic HCC cell lines and in tumour tissue from HCC patients compared to healthy patient tissue. Over-expression of Capn4 in HCC cells enhanced tumour cell growth in vitro and increased invasiveness, tumourigenicity and lung metastasis in vivo. Protein microarray analyses showed that expression of multiple proteins was regulated by Capn4. Interestingly, Capn4 was found to physically associate with FAK and promoted hyperactivity of the FAK-Src signalling pathway via increased phosphorylation of specific tyrosine residues of FAK, Src and p130Cas. Knock-down of Capn4 expression suppressed the malignant behaviour of HCC cells and inhibited the FAK-Src signalling pathway. Furthermore, Capn4-mediated invasion and metastasis of HCC cells required up-regulation of matrix metalloproteinase-2 (MMP2) through activation of this signalling pathway. Our clinical data revealed that Capn4 expression correlated well with the levels of phospho-FAK, and over-expression of both Capn4 and phospho-FAK correlates with the poorest survival outcomes in HCC. In conclusion, our data showed that Capn4 can contribute to HCC growth and metastasis via activation of the FAK-Src signalling pathway and MMP2.


Assuntos
Calpaína/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/fisiologia , Idoso , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Feminino , Imunofluorescência , Quinase 1 de Adesão Focal/metabolismo , Xenoenxertos , Humanos , Imunoprecipitação , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Nus , Microscopia Confocal , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Modelos de Riscos Proporcionais , Análise Serial de Tecidos , Transfecção , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA