Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 4(2): e229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36891351

RESUMO

Interleukin 37 (IL-37), a member of the IL-1 family, is considered a suppressor of innate and adaptive immunity and, hence is a regulator of tumor immunity. However, the specific molecular mechanism and role of IL-37 in skin cancer remain unclear. Here, we report that IL-37b-transgenic mice (IL-37tg) treated with the carcinogenic 7,12-dimethylbenzoanthracene (DMBA)/12-o-tetradecylphorbol-13-acetate (TPA) exhibited enhanced skin cancer and increased tumor burden in the skin by inhibiting the function of CD103+ dendritic cells (DCs). Notably, IL-37 induced rapid phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and via single immunoglobulin IL-1-related receptor (SIGIRR), inhibited the long-term Akt activation. Specifically, by affecting the SIGIRR-AMPK-Akt signaling axis, which is related to the regulation of glycolysis in CD103+DCs, IL-37 inhibited their anti-tumor function. Our results show that a marked correlation between the CD103+DC signature (IRF8, FMS-like tyrosine kinase 3 ligand, CLEC9A, CLNK, XCR1, BATF3, and ZBTB46) and chemokines C-X-C motif chemokine ligand 9, CXCL10, and CD8A in a mouse model with DMBA/TPA-induced skin cancer. In a word, our results highlight that IL-37 as an inhibitor of tumor immune surveillance through modulating CD103+DCs and establishing an important link between metabolism and immunity as a therapeutic target for skin cancer.

2.
Langenbecks Arch Surg ; 408(1): 15, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622474

RESUMO

PURPOSE: Safety in creating a preperitoneal space is crucial in laparoscopic totally extraperitoneal (TEP) hernia repairs. In this systematic review and meta-analysis, we compared the outcomes of balloon dissection and telescopic dissection in patients with inguinal or femoral hernias who underwent TEP hernia repair. METHODS: We searched PubMed, Embase, Web of Science, and Cochrane databases for randomized controlled trials (RCTs) and prospective and retrospective studies published from inception to July 2022. Meta-analysis was performed using a random-effects model. The treatment outcome was measured using operation time, incidence of intraoperative hemorrhage, peritoneal laceration, conversion to other approaches, surgical site infection (SSI), hematoma, seroma formation, hernia recurrence, and postoperative pain. RESULTS: Five RCTs, one prospective study, and two retrospective studies (in total, 936 patients) were included. No significant between-group differences were noted in operation time, SSI, hematoma, seroma, recurrence rate, and postoperative pain on days 1 and 7. The conversion rate was significantly lower in the balloon group than in the telescopic group (odds ratio, 0.34; 95% confidence interval, 0.15-0.81). CONCLUSIONS: Both balloon dissection and telescopic dissection are viable techniques for creating preperitoneal space in laparoscopic TEP hernia repair and have similar operation time, complication rate, and postoperative pain. Nevertheless, the conversion rate was lower in patients undergoing balloon dissection than in those undergoing telescopic dissection.


Assuntos
Hérnia Inguinal , Laparoscopia , Humanos , Herniorrafia/efeitos adversos , Herniorrafia/métodos , Seroma/etiologia , Seroma/cirurgia , Hérnia Inguinal/cirurgia , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Resultado do Tratamento , Dor Pós-Operatória , Telas Cirúrgicas/efeitos adversos
3.
Signal Transduct Target Ther ; 7(1): 19, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35046386

RESUMO

Interleukin-37b (hereafter called IL-37) was identified as fundamental inhibitor of natural and acquired immunity. The molecular mechanism and function of IL-37 in colorectal cancer (CRC) has been elusive. Here, we found that IL-37 transgenic (IL-37tg) mice were highly susceptible to colitis-associated colorectal cancer (CAC) and suffered from dramatically increased tumor burdens in colon. Nevertheless, IL-37 is dispensable for intestinal mutagenesis, and CRC cell proliferation, apoptosis, and migration. Notably, IL-37 dampened protective cytotoxic T cell-mediated immunity in CAC and B16-OVA models. CD8+ T cell dysfunction is defined by reduced retention and activation as well as failure to proliferate and produce cytotoxic cytokines in IL-37tg mice, enabling tumor evasion of immune surveillance. The dysfunction led by IL-37 antagonizes IL-18-induced proliferation and effector function of CD8+ T cells, which was dependent on SIGIRR (single immunoglobulin interleukin-1 receptor-related protein). Finally, we observed that IL-37 levels were significantly increased in CRC patients, and positively correlated with serum CRC biomarker CEA levels, but negatively correlated with the CD8+ T cell infiltration in CRC patients. Our findings highlight the role of IL-37 in harnessing antitumor immunity by inactivation of cytotoxic T cells and establish a new defined inhibitory factor IL-37/SIGIRR in cancer-immunity cycle as therapeutic targets in CRC.


Assuntos
Carcinogênese/imunologia , Colite/imunologia , Neoplasias Colorretais/imunologia , Interleucina-1/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Interleucina-1/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Carcinogênese/genética , Colite/genética , Colite/patologia , Neoplasias Colorretais/genética , Interleucina-1/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Receptores de Interleucina-1/genética
4.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439112

RESUMO

BACKGROUND: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. OBJECTIVE: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. METHODS: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. RESULTS: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1-TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. CONCLUSION: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1-TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.

5.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298692

RESUMO

Background: Testosterone plays a critical role in prostate development and pathology. However, the impact of the molecular interplay between testosterone-associated genes on therapy response and susceptibility to disease relapse in PCa patients remains underexplored. Objective: This study investigated the role of dysregulated or aberrantly expressed testosterone-associated genes in the enhanced dissemination, phenoconversion, and therapy response of treatment-resistant advanced or recurrent PCa. Methods: Employing a combination of multi-omics big data analyses, in vitro, ex vivo, and in vivo assays, we assessed the probable roles of HSD17B2, HSD17B3, SHBG, and SRD5A1-mediated testosterone metabolism in the progression, therapy response, and prognosis of advanced or castration-resistant PCa (CRPC). Results: Our bioinformatics-aided gene expression profiling and immunohistochemical staining showed that the aberrant expression of the HSD17B2, HSD17B3, SHBG, and SRD5A1 testosterone metabolic tetrad characterize androgen-driven PCa and is associated with disease progression. Reanalysis of the TCGA PRAD cohort (n = 497) showed that patients with SRD5A1-dominant high expression of the tetrad exhibited worse mid-term to long-term (≥5 years) overall survival, with a profoundly shorter time to recurrence, compared to those with low expression. More so, we observed a strong association between enhanced HSD17B2/SRD5A1 signaling and metastasis to distant lymph nodes (M1a) and bones (M1b), while upregulated HSD17B3/SHBG signaling correlated more with negative metastasis (M0) status. Interestingly, increased SHBG/SRD5A1 ratio was associated with metastasis to distant organs (M1c), while elevated SRD5A1/SHBG ratio was associated with positive biochemical recurrence (BCR) status, and shorter time to BCR. Molecular enrichment and protein-protein connectivity network analyses showed that the androgenic tetrad regulates testosterone metabolism and cross-talks with modulators of drug response, effectors of cell cycle progression, proliferation or cell motility, and activators/mediators of cancer stemness. Moreover, of clinical relevance, SHBG ectopic expression (SHBG_OE) or SRD5A1 knockout (sgSRD5A1) induced the acquisition of spindle fibroblastoid morphology by the round/polygonal metastatic PC-3 and LNCaP cells, attenuated their migration and invasion capability, and significantly suppressed their ability to form primary or secondary tumorspheres, with concomitant downregulation of stemness KLF4, OCT3/4, and drug resistance ABCC1, ABCB1 proteins expression levels. We also showed that metronomic dutasteride synergistically enhanced the anticancer effect of low-dose docetaxel, in vitro, and in vivo. Conclusion: These data provide proof of concept that re-reprogramming of testosterone metabolism through "SRD5A1 withdrawal" or "SHBG induction" is a workable therapeutic strategy for shutting down androgen-driven oncogenic signals, reversing treatment resistance, and repressing the metastatic/recurrent phenotypes of patients with PCa.

6.
Front Oncol ; 11: 744937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096564

RESUMO

BACKGROUND: Dysfunctional transcription machinery with associated dysregulated transcription characterizes many malignancies. Components of the mediator complex, a principal modulator of transcription, are increasingly implicated in cancer. The mediator complex subunit 10 (MED10), a vital kinase module of the mediator, plays a critical role in bladder physiology and pathology. However, its role in the oncogenicity, metastasis, and disease recurrence in bladder cancer (BLCA) remains unclear. OBJECTIVE: Thus, we investigated the role of dysregulated or aberrantly expressed MED10 in the enhanced onco-aggression, disease progression, and recurrence of bladder urothelial carcinoma (UC), as well as the underlying molecular mechanism. METHODS: Using an array of multi-omics big data analyses of clinicopathological data, in vitro expression profiling and functional assays, and immunocytochemical staining, we assessed the probable roles of MED10 in the progression and prognosis of BLCA/UC. RESULTS: Our bioinformatics-aided gene expression profiling showed that MED10 is aberrantly expressed in patients with BLCA, is associated with high-grade disease, is positively correlated with tumor stage, and confers significant survival disadvantage. Reanalyzing the TCGA BLCA cohort (n = 454), we showed that aberrantly expressed MED10 expression is associated with metastatic and recurrent disease, disease progression, immune suppression, and therapy failure. Interestingly, we demonstrated that MED10 interacts with and is co-expressed with the microRNA, hsa-miR-590, and that CRISPR-mediated knockout of MED10 elicits the downregulation of miR-590 preferentially in metastatic UC cells, compared to their primary tumor peers. More so, silencing MED10 in SW1738 and JMSU1 UC cell lines significantly attenuates their cell proliferation, migration, invasion, clonogenicity, and tumorsphere formation (primary and secondary), with the associated downregulation of BCL-xL, MKI67, VIM, SNAI1, OCT4, and LIN28A but upregulated BAX protein expression. In addition, we showed that high MED10 expression is a non-inferior biomarker of urothelial recurrence compared with markers of cancer stemness; however, MED10 is a better biomarker of local recurrence than any of the stemness markers. CONCLUSION: These data provide preclinical evidence that dysregulated MED10/MIR590 signaling drives onco-aggression, disease progression, and recurrence of bladder UC and that this oncogenic signal is therapeutically actionable for repressing the metastatic/recurrent phenotypes, enhancing therapy response, and shutting down stemness-driven disease progression and relapse in patients with BLCA/UC.

7.
PLoS One ; 7(9): e43792, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984445

RESUMO

Chromomycin A3 (Chro) is capable of forming a stable dimeric complex via chelation with Ni(II), Fe(II) and Co(II). According to the circular dichroism study, the dimer conformations are significantly different among the Fe(II)-, Co(II)-, and Ni(II)-containing dimeric Chro complexes; however, the dimer conformations were preserved at high temperatures. Furthermore, we conducted a systematic study to determine the effects of these divalent metal ions on the DNA-acting efficacy of dimeric Chro, including its DNA-binding affinity, DNA stabilization capacity, DNA cleavage activity, and the inhibition of transcription both in vitro and within cells. Kinetic analyses using surface plasmon resonance (SPR) showed that Ni(II)(Chro)(2) exhibited the highest K(a) with a value of 1.26 × 10(7) M(-1), which is approximately 1.6- and 3.7-fold higher than the K(a) values obtained for Co(II)(Chro)(2) and Fe(II)(Chro)(2), respectively. The T(m) and ΔG values for the DNA duplex increased after the addition of drug complexes in the following order: Ni(II)(Chro)(2)>Co(II)(Chro)(2)>Fe(II)(Chro)(2). In the DNA integrity assays, the DNA cleavage rate of Co(II)(Chro)(2) (1.2 × 10(-3) s(-1)) is higher than those of Fe(II)(Chro)(2) and Ni(II)(Chro)(2), which were calculated to be 1 × 10(-4) and 3.1 × 10(-4) s(-1), respectively. Consistent with the SPR and UV melting results, Ni(II)(Chro)(2) possesses the highest inhibitory effect on in vitro transcription and c-myc transcription within cells compared to Co(II)(Chro)(2) and Fe(II)(Chro)(2). By comparing the cytotoxicity among Co(II)(Chro)(2), Fe(II)(Chro)(2), and Ni(II)(Chro)(2) to several cancer cell lines, our studies concluded that Ni(II)(Chro)(2) displayed more potential antitumor activities than Co(II)(Chro)(2) and Fe(II)(Chro)(2) did due to its higher DNA-acting efficacy. Changes to the divalent metal ions in the dimeric Chro complexes have been correlated with improved anticancer profiles. The availability of new metal derivatives of Chro may introduce new possibilities for exploiting the unique properties of this class of compounds for therapeutic applications.


Assuntos
Cátions Bivalentes/farmacologia , Cromomicina A3/farmacologia , DNA/genética , Dimerização , Metais/farmacologia , Transcrição Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromomicina A3/química , Cromomicina A3/metabolismo , DNA/química , DNA/metabolismo , Humanos , Cinética , Modelos Moleculares , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Ácidos Nucleicos Heteroduplexes/efeitos dos fármacos , Plasmídeos/genética , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Ressonância de Plasmônio de Superfície , Temperatura de Transição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA