Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Dis Immun ; 1(1): 36-42, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630102

RESUMO

Background: Pre-existing liver disease is a risk factor for the worse prognosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We aimed to evaluate whether chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC) affect the expression of viral receptor angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in the liver. Methods: Twelve pairs of matched liver tissues of HCC and para-carcinoma were collected from the First Affiliated Hospital of Zhejiang University School of Medicine. And 20 liver biopsies from CHB patients were collected from Peking University People's Hospital. The expression of ACE2 and TMRPSS2 were detected using immunofluorescence staining, western blot, and RT-qPCR. The effects of hepatitis B virus (HBV) replication or interferon on ACE2 and TMPRSS2 expression were tested in hepatic cell lines. Results: The mRNA expression of TMPRSS2 in HCC tissues was six-fold higher than that of para-carcinoma tissues (P = 0.002), whereas that of ACE2 was not statistically different between HCC and para-carcinoma tissues. Hepatocellular ACE2 expression was detected in 35% (7/20) of CHB patients and mostly distributed in the inflammatory areas. However, there was no difference in TMPRSS2 expression between areas with or without inflammation. IFN-α2b slightly induced ACE2 expression (2.4-fold, P = 0.033) in HepG2 cells but not in Huh-7, QSG-7701, and L-02 cells. IFN-α2b did not affect TMPRSS2 expression in these cell lines. In addition, HBV replication did not alter ACE2 expression in HepAD38 cells. Conclusions: Although HBV replication does not directly affect the expression of ACE2 and TMPRSS2, intrahepatic inflammation and carcinogenesis may increase their expression in some patients, which, in turn, may facilitate SARS-CoV-2 infection in hepatocytes.

2.
Cell Death Dis ; 11(7): 552, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690860

RESUMO

Acute promyelocytic leukemia (APL) therapy involves the compounds cytotoxic to both malignant tumor and normal cells. Relapsed APL is resistant to subsequent chemotherapy. Novel agents are in need to kill APL cells selectively with minimal toxicity. DDX5 has been recognized to be a novel target to suppress acute myeloid leukemia (AML). However, the role of DDX5 remains elusive in APL. Here a DDX5-targeting fully human monoclonal autoantibody named after 2F5 was prepared. It is demonstrated that 2F5 selectively inhibited APL cell proliferation without toxicity to normal neutrophil and tissues. Moreover, 2F5 was confirmed to induce G0/G1 phase arrest in APL cells, and promote APL cell differentiation combined with decreased DDX5 expression and increased reactive oxygen species (ROS) production. Knockdown of DDX5 by siRNA also inhibited proliferation, promoted cell differentiation and enhanced ROS production in APL cells. However, the ROS inhibitor reversed the effects of 2F5 on DDX5 and ROS in APL cells. Thus, we conclude that DDX5-targeting 2F5 inhibits APL cell proliferation, and promotes cell differentiation via induction of ROS. 2F5 showed the therapeutic value of fully human monoclonal autoantibody in APL, which provides a novel and valid approach for treatment of relapse/refractory APL.


Assuntos
Anticorpos Monoclonais/farmacologia , Diferenciação Celular/efeitos dos fármacos , RNA Helicases DEAD-box/antagonistas & inibidores , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Leucemia Promielocítica Aguda/genética , Masculino , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA