Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Fitoterapia ; 177: 106116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977254

RESUMO

Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/ß-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/ß-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.


Assuntos
Alopecia , Camellia , Simulação de Acoplamento Molecular , Polifenóis , Sementes , Via de Sinalização Wnt , Alopecia/tratamento farmacológico , Camellia/química , Animais , Camundongos , Polifenóis/farmacologia , Polifenóis/isolamento & purificação , Sementes/química , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Estrutura Molecular , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/isolamento & purificação
2.
PLoS One ; 19(1): e0286125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236898

RESUMO

A brain tumor magnetic resonance image processing algorithm can help doctors to diagnose and treat the patient's condition, which has important application significance in clinical medicine. This paper proposes a network model based on the combination of U-net and DenseNet to solve the problems of class imbalance in multi-modal brain tumor image segmentation and the loss of effective information features caused by the integration of features in the traditional U-net network. The standard convolution blocks of the coding path and decoding path on the original network are improved to dense blocks, which enhances the transmission of features. The mixed loss function composed of the Binary Cross Entropy Loss function and the Tversky coefficient is used to replace the original single cross-entropy loss, which restrains the influence of irrelevant features on segmentation accuracy. Compared with U-Net, U-Net++, and PA-Net the algorithm in this paper has significantly improved the segmentation accuracy, reaching 0.846, 0.861, and 0.782 respectively in the Dice coefficient index of WT, TC, and ET. The PPV coefficient index has reached 0.849, 0.883, and 0.786 respectively. Compared with the traditional U-net network, the Dice coefficient index of the proposed algorithm exceeds 0.8%, 4.0%, and 1.4%, respectively, and the PPV coefficient index in the tumor core area and tumor enhancement area increases by 3% and 1.2% respectively. The proposed algorithm has the best performance in tumor core area segmentation, and its Sensitivity index has reached 0.924, which has good research significance and application value.


Assuntos
Neoplasias Encefálicas , Medicina Clínica , Médicos , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Algoritmos , Entropia , Processamento de Imagem Assistida por Computador
3.
Clin Mol Hepatol ; 30(1): 80-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061333

RESUMO

BACKGROUND/AIMS: To evaluate the causal correlation between complement components and non-viral liver diseases and their potential use as druggable targets. METHODS: We conducted Mendelian randomization (MR) to assess the causal role of circulating complements in the risk of non-viral liver diseases. A complement-centric protein interaction network was constructed to explore biological functions and identify potential therapeutic options. RESULTS: In the MR analysis, genetically predicted levels of complement C1q C chain (C1QC) were positively associated with the risk of autoimmune hepatitis (odds ratio 1.125, 95% confidence interval 1.018-1.244), while complement factor H-related protein 5 (CFHR5) was positively associated with the risk of primary sclerosing cholangitis (PSC;1.193, 1.048- 1.357). On the other hand, CFHR1 (0.621, 0.497-0.776) and CFHR2 (0.824, 0.703-0.965) were inversely associated with the risk of alcohol-related cirrhosis. There were also significant inverse associations between C8 gamma chain (C8G) and PSC (0.832, 0.707-0.979), as well as the risk of metabolic dysfunction-associated steatotic liver disease (1.167, 1.036-1.314). Additionally, C1S (0.111, 0.018-0.672), C7 (1.631, 1.190-2.236), and CFHR2 (1.279, 1.059-1.546) were significantly associated with the risk of hepatocellular carcinoma. Proteins from the complement regulatory networks and various liver diseaserelated proteins share common biological processes. Furthermore, potential therapeutic drugs for various liver diseases were identified through drug repurposing based on the complement regulatory network. CONCLUSION: Our study suggests that certain complement components, including C1S, C1QC, CFHR1, CFHR2, CFHR5, C7, and C8G, might play a role in non-viral liver diseases and could be potential targets for drug development.


Assuntos
Carcinoma Hepatocelular , Hepatite Autoimune , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Hepatite Autoimune/complicações , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/genética , Neoplasias Hepáticas/genética
4.
Dalton Trans ; 53(1): 292-298, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047479

RESUMO

Four trinucleotides 5'-ATA-3' (I), 5'-ATC-3' (II), 5'-CTA-3' (III) and 5'-CTC-3' (IV) were introduced to interact with a diazido-based photoactivatable anticancer prodrug trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (py = pyridine; 1) upon light irradiation. Using electrospray ionization mass spectrometry (ESI-MS), we aimed to investigate the possibility of 1,3-intrastrand crosslinks at adenine and/or cytosine in the trinucleotides via the bi-functional trans-[PtII(py)2]2+ species generated by photodecomposition of complex 1. The primary mass spectrometry results showed that although mono- and di-platinated trinucleotides bound by mono-functional trans-[PtII(N3)(py)2]+ species were the major platinated adducts, comparable amounts of bifunctional trans-[PtII(py)2]2+-bound trinucleotides were also observed. Further tandem mass spectrometry of the trans-[PtII(py)2]2+-bound trinucleotides showed the formation of 1,3-crosslinks between adenine-adenine, adenine-cytosine and cytosine-cytosine bases in the trinucleotides. The formation of such unique structures is not only distinct from the action modes of cisplatin with DNA but also an important complement to the acknowledged 1,3-GNG intrastrand crosslink by trans-Pt species, which may support the promising and distinct anticancer activities of such photoactivatable diazido Pt(IV) anticancer prodrugs and deserve further studies.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Adenina , Cisplatino
5.
Cancer Metab ; 11(1): 24, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057929

RESUMO

BACKGROUND: The relationship between obesity and non-Hodgkin's lymphoma (NHL) was controversial, which may be due to the crudeness definition of obesity based on body mass index (BMI). As obesity and metabolic abnormalities often coexist, we aimed to explore whether the classification of obesity based on metabolic status can help to evaluate the real impact of obesity on the readmission of NHL. METHODS: In this retrospective cohort study, utilizing the 2018 Nationwide Readmissions Database, we identified NHL-related index hospitalizations and followed them for non-elective readmission. The patients with NHL were classified as metabolically healthy non-obese (MHNO) and obese (MHO) and metabolically unhealthy non-obese (MUNO) and obese (MUO). Readmission rates for each phenotype were calculated at 30-day intervals. Multiple COX regression was used to analyze the association of metabolic-defined obesity with 30-day, 90-day, and 180-day readmission rates in patients with NHL. RESULTS: There were 22,086 index hospitalizations with NHL included. In the multivariate COX regression, MUNO was associated with increased 30-day (HR = 1.113, 95% CI 1.036-1.195), 90-day (HR = 1.148, 95% CI 1.087-1.213), and 180-day readmission rates (HR = 1.132, 95% CI 1.077-1.189), and MUO was associated with increased 30-day (HR=1.219, 95% CI: 1.081-1.374), 90-day (HR = 1.228, 95% CI 1.118-1.348), and 180-day readmission rates (HR = 1.223, 95% CI 1.124-1.33), while MHO had no associations with readmission rates. CONCLUSIONS: The presence of metabolic abnormalities with or without obesity increased the risk of non-selective readmission in patients with NHL. However, obesity alone had no associations with the risk of non-selective readmission, suggesting that interventions for metabolic abnormalities may be more important in reducing readmissions of NHL patients.

6.
Front Endocrinol (Lausanne) ; 14: 1214651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964973

RESUMO

Purpose: Patients with digestive system cancers (DSCs) are at a high risk for hospitalizations; however, the risk factors for readmission remain unknown. Here, we established a retrospective cohort study to assess the association between metabolic obesity phenotypes and readmission risks of DSC. Experimental design: A total of 142,753 and 74,566 patients at index hospitalization were ultimately selected from the Nationwide Readmissions Database (NRD) 2018 to establish the 30-day and 180-day readmission cohorts, respectively. The study population was classified into four groups: metabolically healthy non-obese (MHNO), metabolically healthy obese (MHO), metabolically unhealthy non-obese (MUNO), and metabolically unhealthy obese (MUO). Multivariate Cox regression analysis was used to estimate the effect of metabolic obesity phenotypes on DSC readmission. Results: The MUNO phenotype had 1.147-fold (95% CI: 1.066, 1.235; p < 0.001) increased 180-day readmission risks in patients with neoplasm of the upper digestive tract. The MUNO phenotype had 1.073-fold (95% CI: 1.027, 1.121; p = 0.002) increased 30-day readmission risks and 1.067-fold (95% CI: 1.021, 1.115; p = 0.004) increased 180-day readmission risks in patients with neoplasm of the lower digestive tract. The MUNO and MUO phenotypes were independent risk factors of readmission in patients with liver or pancreatic neoplasm. Metabolic obesity status was independently associated with a high risk of severe and unplanned hospitalization within 30 days or 180 days. Conclusion: Both obesity and metabolic abnormalities are associated with a high risk for the poor prognosis of DSC patients. The effect of metabolic categories on the short- or long-term readmission of liver or pancreas cancers may be stronger than that of obesity.


Assuntos
Neoplasias do Sistema Digestório , Doenças Metabólicas , Síndrome Metabólica , Humanos , Síndrome Metabólica/epidemiologia , Readmissão do Paciente , Estudos Retrospectivos , Obesidade/complicações , Obesidade/epidemiologia , Doenças Metabólicas/complicações , Neoplasias do Sistema Digestório/epidemiologia
7.
Dalton Trans ; 52(34): 12057-12066, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581306

RESUMO

The interaction of a photoactivatable diazidodihydroxido Pt(IV) prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1), with a hexamer straight human telomeric DNA unit sequence (5'-T1T2A3G4G5G6-3', I) upon light irradiation was investigated by electrospray ionization mass spectroscopy (ESI-MS). In the primary mass spectrum, two major mono-platinated I adducts with the bound Pt moieties, trans-[PtII(N3)(py)2]+ (1') and trans-[PtII(py)2]2+ (1''), respectively, were detected. It is rare to observe such high abundance and nearly equal intensity platinated DNA adducts formed by these two PtII species because 1' is usually the only major reduced Pt(II) species produced by the photodecomposition of complex 1 in the presence of DNA while 1'' was rarely detected as the major reduced PtII species reported previously. Subsequent tandem mass spectrometric analysis by collision-induced dissociation (CID) showed that in the former adduct {I + 1'}2+, G6 and A3 were the platination sites. While in the latter adduct {I + 1''}2+, a potential intrastrand crosslink was speculated after G4 and G6 sites were identified. Additionally, other minor platinated adducts like di-platinated I adduct by 1' with platination sites at G4 and G6 and mono-platinated I adducts containing base oxidation were also detected by mass spectrometry. Due to the rich guanines and their sensitivity to oxidation, the oxidation induced by 1 most probably occurred at guanine. The oxidation adducts were proposed as 8-hydroxyl guanine, spiroiminodihydantoin (Sp), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 5-guanidinohydantoin (Gh), and/or dehydroguanidinohydantoin (DGh) referring to previous reports. The obtained results provide useful chemical information about the photoreaction between photoactivatable Pt(IV) anticancer prodrugs and human telomeric DNA. Such special damages of Pt(IV) prodrugs on human telomeric DNA implicate its active role in the mechanism of Pt(IV) prodrugs and further support the unique sequence-dependent photointeraction profile of complex 1 reacting with DNA.


Assuntos
Antineoplásicos , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Pró-Fármacos/química , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , DNA/química , Adutos de DNA , Guanina/química
8.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448165

RESUMO

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Assuntos
Quitinases , Pinus , Tylenchida , Animais , Xylophilus , Ecossistema , Quitinases/genética , Pinus/parasitologia , Tylenchida/genética , Doenças das Plantas/parasitologia
9.
Biomater Adv ; 151: 213491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295195

RESUMO

Soft-tissue sealing at transmucosal sites is very important for preventing the invasion of pathogens and maintaining the long-term stability and function of dental implants. However, the colonization of oral pathogens on the implant surface and surrounding soft tissues can disturb the early establishment of soft-tissue sealing and even induce peri-implant infection. The purpose of this study was to construct two antibacterial coatings with 5 or 10 sodium alginate/chlorhexidine bilayers on titanium surfaces using layer-by-layer self-assembly technology to promote soft-tissue sealing. The corresponding chemical composition, surface topography, wettability and release behaviour were investigated to prove that the resultant coating of sodium alginate and chlorhexidine was coated on the porous titanium surface. In-vitro and in-vivo antibacterial results showed that both prepared coatings inhibited or killed the bacteria on their surfaces and the surrounding areas to prevent plaque biofilm formation, especially the coating with 10 bilayers. Although both coatings inhibited the initial adhesion of fibroblasts, the cytocompatibility gradually improved with coating degradation. More importantly, both coatings achieved cell adhesion and proliferation in an in-vitro bacterial environment and effectively alleviated bacteria-induced subcutaneous inflammation in-vivo. Therefore, this study demonstrated that the multilayered coating could prevent implant-related infections in the initial stage of implant surgery and then improve soft-tissue integration with implant devices.


Assuntos
Anti-Infecciosos , Implantes Dentários , Clorexidina/farmacologia , Titânio/farmacologia , Alginatos/farmacologia , Antibacterianos/farmacologia
10.
Hepatol Commun ; 7(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185170

RESUMO

BACKGROUND: Macrophage-inducible C-type lectin (Mincle) is expressed on hepatic macrophages and senses ethanol (EtOH)-induced danger signals released from dying hepatocytes and promotes IL-1ß production. However, it remains unclear what and how EtOH-induced Mincle ligands activate downstream signaling events to mediate IL-1ß release and contribute to alcohol-associated liver disease (ALD). In this study, we investigated the association of circulating ß-glucosylceramide (ß-GluCer), an endogenous Mincle ligand, with severity of ALD and examined the mechanism by which ß-GluCer engages Mincle on hepatic macrophages to release IL-1ß in the absence of cell death and exacerbates ALD. METHOD AND RESULTS: Concentrations of ß-GluCer were increased in serum of patients with severe AH and correlated with disease severity. Challenge of hepatic macrophages with lipopolysaccharide and ß-GluCer induced formation of a Mincle and Gsdmd-dependent secretory complex containing chaperoned full-length gasdermin D (Hsp90-CDC37-NEDD4) with polyubiquitinated pro-IL-1ß and components of the Caspase 8-NLRP3 inflammasome loaded as cargo in small extracellular vesicles (sEVs). Gao-binge EtOH exposure to wild-type, but not Mincle-/- and Gsdmd-/-, mice increased release of IL-1ß-containing sEVs from liver explant cultures. Myeloid-specific deletion of Gsdmd similarly decreased the formation of sEVs by liver explant cultures and protected mice from EtOH-induced liver injury. sEVs collected from EtOH-fed wild-type, but not Gsdmd-/-, mice promoted injury of cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge EtOH-induced liver injury. CONCLUSION: ß-GluCer functions as a danger-associated molecular pattern activating Mincle-dependent gasdermin D-mediated formation and release of IL-1ß-containing sEVs, which in turn exacerbate hepatocyte cell death and contribute to the pathogenesis of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/toxicidade , Gasderminas , Células de Kupffer/metabolismo , Hepatopatias Alcoólicas/metabolismo
11.
RSC Adv ; 13(18): 12618-12633, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37101950

RESUMO

The iron and steel industry is one of the foundational industries in China. However, with the introduction of energy-saving and emission reduction policies, desulfurization of blast furnace gas (BFG) is also necessary for further sulfur control in the iron and steel industry. Carbonyl sulfide (COS) has become a significant and difficult issue in the BFG treatment due to its unique physical and chemical properties. The sources of COS in BFG are reviewed, and the commonly used removal methods for COS are summarized, including the types of adsorbents commonly used in adsorption methods and the adsorption mechanism of COS. The adsorption method is simple in operation, economical, and rich in types of adsorbents and has become a major focus of current research. At the same time, commonly used adsorbent materials such as activated carbon, molecular sieves, metal-organic frameworks (MOFs), and layered hydroxide adsorbents (LDHs) are introduced. The three mechanisms of adsorption including π-complexation, acid-base interaction, and metal-sulfur interaction provide useful information for the subsequent development of BFG desulfurization technology.

12.
Phytopathology ; 113(3): 539-548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36976314

RESUMO

Pine wilt disease, caused by Bursaphelenchus xylophilus, results in tremendous economic loss in conifer production every year. To disturb the host immune responses, plant pathogens secrete a mass of effector proteins that facilitate the infection process. Although several effectors of B. xylophilus have been identified, detailed mechanisms of their functions remain largely unexplored. Here, we reveal two novel B. xylophilus Kunitz effectors, named BxKU1 and BxKU2, using different infection strategies to suppress immunity in Pinus thunbergii. We found that both BxKU1 and BxKU2 could suppress PsXEG1-triggered cell death and were present in the nucleus and cytoplasm in Nicotiana benthamiana. However, they had different three-dimensional structures and various expression patterns in B. xylophilus infection. In situ hybridization experiments showed that BxKU2 was expressed in the esophageal glands and ovaries, whereas BxKU1 was only expressed in the esophageal glands of females. We further confirmed that the morbidity was significantly decreased in P. thunbergii infected with B. xylophilus when BxKU1 and BxKU2 were silenced. The silenced BxKU2I, but not BxKU1, affected the reproduction and feeding rate of B. xylophilus. Moreover, BxKU1 and BxKU2 targeted to different proteins in P. thunbergii, but they all interacted with thaumatin-like protein 4 (TLP4) according to yeast two-hybrid screening. Collectively, our study showed that B. xylophilus could incorporate two Kunitz effectors in a multilayer strategy to counter immune response in P. thunbergii, which could help us better understand the interaction between plant and B. xylophilus.


Assuntos
Pinus , Tylenchida , Animais , Xylophilus , Doenças das Plantas
13.
Dalton Trans ; 52(9): 2786-2798, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752086

RESUMO

CpG and its cytosine-methylated counterpart (5mCpG) are a unique reversible pair of sequences in regulating the expression of genes epigenetically. As DNA is the potential target of Pt-based anticancer metallodrugs, herein, we comparatively investigate the interactions of 5'-CpG and 5'-5mCpG with a photoactivatable anticancer Pt(IV) prodrug, trans,trans,trans-[PtIV(N3)2(OH)2(py)2] (1; py = pyridine), to explore the effects of methylation on the platination and ROS-induced oxidation of the CpG motif. Mono-platinated dinucleotides were demonstrated by ESI-MS to be the main products for both 5'-CpG and 5'-5mCpG with the bound Pt moiety as [PtII(N3)(py)2] generated by the photodecomposition of complex 1 under irradiation with blue light, accompanied by the formation of less abundant di-platinated adducts. G-N7 and C-N3/5mC-N3 were shown to be the major and minor platination sites, respectively, with G-N1 as the third and weakest platination site, in particular, in di-platinated products. Moreover, platinated dinucleotides associated with guanine and/or cytosine oxidation were also observed. Apart from 8-oxo-guanine (oxG) and N-formylamidoiminohydantoin (RedSp) reported previously, novel oxidation adducts 5-guanidinohydantoin (Gh) derived from guanine and 1-carbamoyl-4,5-dihydroxy-2-oxoimidazolidine (ImidCyt) derived from cytosine in CpG, and diimino imidazole (DIz) and 2,5-diaminoimidazol-4-one (imidazolone, Iz) derived from guanine and Imid5mCyt derived from 5mC in 5mCpG were proposed according to MS information. These results showed that methylation exerted little effects on the platination modes of CpG, but triggered distinct oxidation pathways of CpG, perhaps causing discriminated DNA damage to CpG-rich genes. This work provides novel insights into the role of the anticancer photoactivatable Pt(IV) prodrug through damaging the epigenetically modified DNA sequences.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Pró-Fármacos/farmacologia , Compostos Organoplatínicos/farmacologia , Guanina , Citosina , Adutos de DNA
14.
Hepatology ; 77(3): 902-919, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35689613

RESUMO

BACKGROUND AND AIMS: Mixed lineage kinase domain-like pseudokinase (MLKL), a key terminal effector of necroptosis, also plays a role in intracellular vesicle trafficking that is critical for regulating liver inflammation and injury in alcohol-associated liver disease (ALD). Although receptor interacting protein kinase 3 (Rip3)-/- mice are completely protected from ethanol-induced liver injury, Mlkl-/- mice are only partially protected. Therefore, we hypothesized that cell-specific functions of MLKL may contribute to ethanol-induced injury. APPROACH AND RESULTS: Bone marrow transplants between Mlkl-/- mice and littermates were conducted to distinguish the role of myeloid versus nonmyeloid Mlkl in the Gao-binge model of ALD. Ethanol-induced hepatic injury, steatosis, and inflammation were exacerbated in Mlkl-/- →wild-type (WT) mice, whereas Mlkl deficiency in nonmyeloid cells (WT→ Mlkl-/- ) had no effect on Gao-binge ethanol-induced injury. Importantly, Mlkl deficiency in myeloid cells exacerbated ethanol-mediated bacterial burden and accumulation of immune cells in livers. Mechanistically, challenging macrophages with lipopolysaccharide (LPS) induced signal transducer and activator of transcription 1-mediated expression and phosphorylation of MLKL, as well as translocation and oligomerization of MLKL to intracellular compartments, including phagosomes and lysosomes but not plasma membrane. Importantly, pharmacological or genetic inhibition of MLKL suppressed the phagocytic capability of primary mouse Kupffer cells (KCs) at baseline and in response to LPS with/without ethanol as well as peripheral monocytes isolated from both healthy controls and patients with alcohol-associated hepatitis. Further, in vivo studies revealed that KCs of Mlkl-/- mice phagocytosed fewer bioparticles than KCs of WT mice. CONCLUSION: Together, these data indicate that myeloid MLKL restricts ethanol-induced liver inflammation and injury by regulating hepatic immune cell homeostasis and macrophage phagocytosis.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Camundongos , Animais , Lipopolissacarídeos/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/toxicidade , Hepatite Alcoólica/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fagocitose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
15.
Microbiol Res ; 268: 127280, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563631

RESUMO

Utilization of rhizosphere microorganisms to improve plant growth and salt tolerance has recently attracted widespread attention. The growth and salt tolerance of willows inoculated with Bacillus cereus JYZ-SD2 and Peniophora cinerea XC were studied under different salt stress conditions. The results showed that the chlorophyll content of willow cuttings inoculated with the XC strain increased significantly by 51.27%. After salt stress of willow cuttings inoculated with B. cereus JYZ-SD2 and P. cinerea XC (solely or in combination), the amount of sodium in the roots from the epidermis to the pericycle decreased and the content of sodium in the pericycle was significantly lower than that of the uninoculated willow, while the proportion of potassium increased. Willow cuttings inoculated with microorganisms showed increased activity of SOD and POD. At the salt concentration of 100 mmol/L, the highest SOD activity was found in B. cereus JYZ-SD2-inoculated willows, with 59.88% increase compared to uninoculated willows; the highest POD activity was found in P. cinerea XC and B. cereus JYZ-SD2 co-inoculated willows, with 51.05% increase compared to uninoculated willows. The Na-K-ATPase and Ca-Mg-ATPase activities of inoculated P. cinerea XC willow cuttings were also 59.38% and 60% higher than that of uninoculated willows, respectively. The qPCR analysis showed that the expression of vp2 gene in the microorganism-inoculated willow leaves was always higher than that in willow alone. The expression of vp2 gene in P. cinerea XC-inoculated willow cuttings was 270.81% higher than that in uninoculated willows. Further observation of the ultrastructure of root cells under salt stress revealed that most of the vesicles in the root tip cells of willow were intact and secreted phagocytic vesicles to absorb sodium ions in the cytoplasm. This study shows that the combined beneficial fungi and rhizosphere-promoting bacteria inoculation technology as a practical biotechnological approach to enhance the growth of willows in salt-affected soils.


Assuntos
Bacillus cereus , Rizosfera , Salix , Tolerância ao Sal , Adenosina Trifosfatases/metabolismo , Bacillus cereus/metabolismo , Raízes de Plantas/microbiologia , Salix/microbiologia , Salix/fisiologia , Superóxido Dismutase/metabolismo
16.
Front Plant Sci ; 13: 960750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186024

RESUMO

Plant growth-promoting rhizobacteria are important for improving plant iron nutrition, but the interactions among inoculants, host plants and soil microorganisms have not been greatly explored. Rahnella aquatilis JZ-GX1 was applied to treat the increasingly serious iron deficiency chlorosis in Cinnamomum camphora, and the resulting improvement in chlorosis was determined by assessing the contents of chlorophyll, active iron, Fe2+ and antioxidant enzymes in leaves, the effects on the soil microbial community and the metabolism in the rhizosphere by high-throughput sequencing techniques and liquid chromatography-mass spectrometry (LC-MS). The results showed that inoculation with JZ-GX1 significantly increased the chlorophyll content of C. camphora, which promoted the redistribution of active iron in roots and leaves, increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and thus reduced membrane damage in iron-deficient C. camphora caused by reactive oxygen species. According to genome prediction and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis, the JZ-GX1 strain could secrete desferrioxamine (DFO), and the concentration of DFO in C. camphora rhizosphere was 21-fold higher than that in uninoculated soil. The exogenous application of DFO increased the SPAD and Fe2+ contents in leaves. In addition, the inoculant affected the fungal community structure and composition in the C. camphora rhizosphere soil and increased the abundances of specific taxa, such as Glomus, Mortierella, Trichoderma, and Penicillium. Therefore, R. aquatilis JZ-GX1 application promoted iron absorption in C. camphora trees by secreting DFO and alleviated iron deficiency chlorosis through interactions with the local fungal community.

17.
Front Microbiol ; 13: 1013468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212874

RESUMO

Volatile organic compounds (VOCs) produced by microorganisms are considered promising environmental-safety fumigants for controlling soil-borne diseases. Verticillium dahliae, a notorious fungal pathogen, causes economically important wilt diseases in agriculture and forestry industries. Here, we determined the antifungal activity of VOCs produced by Trichoderma koningiopsis T2. The VOCs from T. koningiopsis T2 were trapped by solid-phase microextraction (SPME) and tentatively identified through gas chromatography-mass spectrometry (GC/MS). The microsclerotia formation, cell wall-degrading enzymes and melanin synthesis of V. dahliae exposed to the VOC mixtures and selected single standards were examined. The results showed that the VOCs produced by strain T2 significantly inhibited the growth of V. dahliae mycelium and reduced the severity of Verticillium wilt in tobacco and cotton. Six individual compounds were identified in the volatilome of T. koningiopsis T2, and the dominant compounds were 3-octanone, 3-methyl-1-butanol, butanoic acid ethyl ester and 2-hexyl-furan. The VOCs of strain T2 exert a significant inhibitory effect on microsclerotia formation and decreased the activities of pectin lyase and endo-ß-1,4-glucanase in V. dahliae. VOCs also downregulated the VdT3HR, VdT4HR, and VdSCD genes related to melanin synthesis by 29. 41-, 10. 49-, and 3.11-fold, respectively. Therefore, T. koningiopsis T2 has potential as a promising biofumigant for the biocontrol of Verticillium wilt disease.

18.
Front Oncol ; 12: 894261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081553

RESUMO

Granular cell tumor is an infrequent, predominantly benign tumor originating from Schwann cells. Granular cell tumor of the breast (GCTB) can simulate breast malignant carcinoma on the clinical assessment. We herein present a rare case of GCTB which recurred in the contralateral breast. We believe the contrast-enhanced ultrasound (CEUS) findings of GCTB have never been described. The high similarity of breast malignant carcinoma makes its differential diagnosis difficult on the clinical and radiological features. In this report, we present the CEUS findings from a rare case of GCTB, explore the possible value of CEUS in differential diagnosis between benign breast lesions and malignant ones, and briefly review the literature.

19.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077250

RESUMO

Iron deficiency causes chlorosis and growth inhibition in Cinnamomum camphora, an important landscaping tree species. Siderophores produced by plant growth-promoting rhizobacteria have been widely reported to play an indispensable role in plant iron nutrition. However, little to date has been determined about how microbial siderophores promote plant iron absorption. In this study, multidisciplinary approaches, including physiological, biochemical and transcriptome methods, were used to investigate the role of deferoxamine (DFO) in regulating Fe availability in C. camphora seedlings. Our results showed that DFO supplementation significantly increased the Fe2+ content, SPAD value and ferric-chelate reductase (FCR) activity in plants, suggesting its beneficial effect under Fe deficiency. This DFO-driven amelioration of Fe deficiency was further supported by the improvement of photosynthesis. Intriguingly, DFO treatment activated the metabolic pathway of glutathione (GSH) synthesis, and exogenous spraying reduced glutathione and also alleviated chlorosis in C. camphora. In addition, the expression of some Fe acquisition and transport-related genes, including CcbHLH, CcFRO6, CcIRT2, CcNramp5, CcOPT3 and CcVIT4, was significantly upregulated by DFO treatment. Collectively, our data demonstrated an effective, economical and feasible organic iron-complexing agent for iron-deficient camphor trees and provided new insights into the mechanism by which siderophores promote iron absorption in plants.


Assuntos
Anemia Hipocrômica , Cinnamomum camphora , Desferroxamina/farmacologia , Perfilação da Expressão Gênica , Ferro/metabolismo , Sideróforos/metabolismo
20.
Int J Genomics ; 2022: 6084549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935749

RESUMO

More and more evidence suggests the oncogenic function of overexpressed CDC28 protein kinase regulatory subunit 2 (CKS2) in various human cancers. However, CKS2 has rarely been studied in cervical cancer. Herein, taking advantage of massive genetics data from multicenter RNA-seq and microarrays, we were the first group to perform tissue microarrays for CKS2 in cervical cancer. We were also the first to evaluate the clinical significance of CKS2 with large samples (980 cervical cancer cases and 422 noncancer cases). We further excavated the mechanism of the tumor-promoting activities of CKS2 in cervical cancer through analysis of genetic mutation profiles, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) significant enrichment of genes coexpressed with CKS2. According to the results, expression data from multilevels unanimously supported the overexpression of CKS2 in cervical cancer. Patients with cervical cancer in stage II from inhouse microarrays had significantly higher expression of CKS2, and CKS2 overexpression had an adverse impact on the disease-free survival status of cervical cancer patients in GSE44001. Both mutation types of mRNA high and mRNA low appeared in cervical cancer cases from the TCGA Firehose project. Gene coexpressed with CKS2 participated in pathways including the cell cycle, estrogen signaling pathway, and DNA replication. In summary, upregulated CKS2 is closely associated with the malignant clinical development of cervical cancer and might serve as a valuable therapeutic target in cervical cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA