Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Environ Manage ; 365: 121613, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944964

RESUMO

Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.

2.
Cell Rep ; 43(6): 114366, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38879877

RESUMO

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.


Assuntos
Quinase do Ponto de Checagem 2 , Estresse Oxidativo , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , Quinase do Ponto de Checagem 2/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Fosforilação , Retroalimentação Fisiológica , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Estabilidade Proteica , Animais
3.
Artigo em Inglês | MEDLINE | ID: mdl-38918324

RESUMO

Renal ischemia-reperfusion injury (IRI) frequently occurs following kidney transplantation, and exosomes derived from umbilical cord mesenchymal stem cells (WJ-MSC-Exos) have shown promise in treating IRI in transplanted kidneys. Our study delved into the potential mechanism of WJ-MSC-Exos in ameliorating IRI in transplanted kidneys, revealing that miR-19b is abundantly present in WJ-MSC-Exos. Both in vivo and in vitro experiments demonstrated that the absence of miR-19b abolished the protective effects of WJ-MSC-Exos against renal IRI. Mechanistically, miR-19b suppressed glycogen synthase kinase-3ß (GSK3ß) expression, thereby stabilizing PDXK protein through direct binding. Treatment with WJ-MSC-Exos led to reduced PDXK levels and enhanced pyridoxine accumulation, ultimately mitigating IRI in transplanted kidneys and I/R-induced HK2 cell apoptosis. These findings elucidate the underlying mechanism of WJ-MSC-Exos in alleviating IRI in transplanted kidneys, unveiling novel therapeutic targets for post-kidney transplantation IRI and providing a solid theoretical foundation for the clinical application of WJ-MSC-Exos in IRI treatment post-transplantation.

4.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871922

RESUMO

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

5.
J Cancer Res Clin Oncol ; 150(4): 188, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602568

RESUMO

BACKGROUND: We aimed to comprehensively analyze the clinical value of immune-related eRNAs-driven genes in lung adenocarcinoma (LUAD) and find the potential biomarkers for prognosis and therapeutic response to improve the survival of this malignant disease. MATERIALS AND METHODS: Pearson's correlation analysis was performed to identify the immune-related eRNAs-driven genes. Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were used to construct this prognostic risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to investigate the underlying molecular mechanism. The single sample gene set enrichment analysis (ssGSEA) algorithm was conducted to evaluate the immune status based on the signature. The quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate the expression value of the signature genes between LUAD tissues and adjacent lung tissues. RESULTS: Five immune-related eRNAs-driven genes (SHC1, GDF10, CCL14, FYN, and NOD1) were identified to construct a prognostic risk signature with favorable predictive capacity. The patients with high-risk scores based on the signature were significantly associated with the malignant clinical features compared with those with low-risk scores. Kaplan-Meier analysis demonstrated that the sample in the low-risk group had a prolonged survival compared with those in the high-risk group. This risk signature was validated to have a promising predictive capacity and reliability in diverse clinical situations and independent cohorts. The functional enrichment analysis demonstrated that humoral immune response and intestinal immune network for IgA production pathway might be the underlying molecular mechanism related to the signature. The proportion of the vast majority of immune infiltrating cells in the high-risk group was significantly lower than that in the low-risk group, and the immunotherapy response rate in the low-risk group was significantly higher than that in the high-risk group. Moreover, BI-2536, sepantronium bromide, and ULK1 were the potential drugs for the treatment of patients with higher risk scores. Finally, the experiment in vivo and database analysis indicated that CCL14, FYN, NOD1, and GDF10 are the potential LUAD suppressor and SHC1 is a potential treatment target for LUAD. CONCLUSION: Above all, we constructed a prognostic risk signature with favorable predictive capacity in LUAD, which was significantly associated with malignant features, immunosuppressive tumor microenvironment, and immunotherapy response and may provide clinical benefit in clinical decisions.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , RNAs Intensificadores , Reprodutibilidade dos Testes , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral
6.
J Multidiscip Healthc ; 17: 1541-1548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623394

RESUMO

Objective: This study explores the correlation between coping style, quality of life, and illness uncertainty in the family caregivers of patients with liver cancer. Methods: Employing convenience sampling, 210 family caregivers of patients with liver cancer who met the admission criteria were selected from a grade A infectious disease hospital in Beijing between January and December 2022. A cross-sectional survey was conducted using the Simplified Coping Style Questionnaire, Caregiver Quality of Life, and the Mishel Uncertainty in Illness Scale for Family Members. This study analysed the correlations between coping styles, quality of life, and illness uncertainty in these caregivers. Results: The study found that family caregivers of patients with liver cancer had average scores for illness uncertainty (83.44 ± 11.86), coping style (33.19 ± 9.79; both positive [23.02 ± 6.81] and negative [10.17 ± 5.05]), and quality of life (169.53 ± 32.46). A negative association was observed between illness uncertainty in these caregivers and positive coping style (r = -0.207, p = 0.003), physical status (r = -0.182, p = 0.008), psychological status (r = -0.200, p = 0.004), and social adaptation (r = -0.229, p = 0.001). Conclusion: The study concludes that illness uncertainty in family caregivers of patients with liver cancer is at a moderate level. Furthermore, there is a notable correlation between illness uncertainty, coping style, and quality of life in these caregivers.

7.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
8.
Transl Stroke Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558011

RESUMO

Intracerebral hemorrhage (ICH) is the most serious form of stroke and has limited available therapeutic options. As knowledge on ICH rapidly develops, cutting-edge techniques in the fields of surgical robots, regenerative medicine, and neurorehabilitation may revolutionize ICH treatment. However, these new advances still must be translated into clinical practice. In this review, we examined several emerging therapeutic strategies and their major challenges in managing ICH, with a particular focus on innovative therapies involving robot-assisted minimally invasive surgery, stem cell transplantation, in situ neuronal reprogramming, and brain-computer interfaces. Despite the limited expansion of the drug armamentarium for ICH over the past few decades, the judicious selection of more efficacious therapeutic modalities and the exploration of multimodal combination therapies represent opportunities to improve patient prognoses after ICH.

9.
Front Biosci (Landmark Ed) ; 29(4): 140, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682195

RESUMO

BACKGROUND: Recurrence and metastasis are the main causes of non-small cell lung cancer (NSCLC)-related death. CD146 has been identified as a potential risk factor for poor prognosis, closely related to the distant metastasis and drug resistance in various cancers. However, the clinical significance of CD146 in NSCLC requires further investigation. MATERIALS AND METHODS: This study explored the correlation between CD146 expression and clinical variables using tumor tissue samples collected from our hospital. CD146 expression levels in NSCLC cell lines and tissues were assessed and compared using immunohistochemistry, real-time polymerase chain reaction (RT-qPCR), flow cytometry, and western blot analysis. The invasion and migration capabilities of tumor cells were determined using transwell and wound healing assays. The levels of proteins related to epithelial-mesenchymal transition (EMT) as well as the underlying PI3K/Akt signaling pathway was measured by western blotting. RESULTS: We discovered that CD146 expression is significantly associated with the EMT signaling pathway. High CD146 expression predicted lymph node metastasis, metastasis to distant organs, advanced Tumor, Node, Metastasis (TNM) staging, and poor survival in NSCLC patients. Wound healing and transwell assays showed that knocking down CD146 significantly suppressed cell migration along with cell invasion in NSCLC, whereas overexpressing CD146 notably enhanced these processes. Western blot analysis revealed significantly reduced levels of N-cadherin, vimentin, snail, twist, PI3K, and AKT phosphorylation in shCD146 H460 cells compared to vector control cells. Treatment with PI3K inhibitor PI3K-IN-1 increased E-cadherin expression levels but reduced N-cadherin, Twist, Vimentin, PI3K, and AKT phosphorylation levels in pcDNA3.1-CD146 A549 cells compared with the vector control cells. CONCLUSIONS: CD146 expression acts as a prognostic risk factor for adverse outcomes in NSCLC, promoting invasion and metastasis by activating the EMT through the PI3K/Akt signaling pathway. These findings underscore the potential therapeutic strategies targeting CD146, offering new treatment options for NSCLC patients, especially those at risk of metastasis.


Assuntos
Antígeno CD146 , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Invasividade Neoplásica , Transdução de Sinais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno CD146/metabolismo , Antígeno CD146/genética , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Adv Sci (Weinh) ; 11(16): e2308493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380492

RESUMO

Supramolecular chirality-mediated selective interaction among native assemblies is essential for precise disease diagnosis and treatment. Herein, to fully understand the supramolecular chiral binding affinity-achieved therapeutic efficiency, supramolecular chiral nanoparticles (WP5⊃D/L-Arg+DOX+ICG) with the chirality transfer from chiral arginine (D/L-Arg) to water-soluble pillar[5]arene (WP5) are developed through non-covalent interactions, in which an anticancer drug (DOX, doxorubicin hydrochloride) and a photothermal agent (ICG, indocyanine green) are successfully loaded. Interestingly, the WP5⊃D-Arg nanoparticles show 107 folds stronger binding capability toward phospholipid-composed liposomes compared with WP5⊃L-Arg. The enantioselective interaction further triggers the supramolecular chirality-specific drug accumulation in cancer cells. As a consequence, WP5⊃D-Arg+DOX+ICG exhibits extremely enhanced chemo-photothermal synergistic therapeutic efficacy (tumor inhibition rate of 99.4%) than that of WP5⊃L-Arg+DOX+ICG (tumor inhibition rate of 56.4%) under the same condition. This work reveals the breakthrough that supramolecular chiral assemblies can induce surprisingly large difference in cancer therapy, providing strong support for the significance of supramolecular chirality in bio-application.


Assuntos
Antineoplásicos , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Verde de Indocianina/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Arginina/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Compostos de Amônio Quaternário/química , Calixarenos/química , Estereoisomerismo
11.
Respiration ; 103(3): 134-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382478

RESUMO

BACKGROUND: Early detection and accurate diagnosis of pulmonary nodules are crucial for improving patient outcomes. While surgical resection of malignant nodules is still the preferred treatment option, it may not be feasible for all patients. We aimed to discuss the advances in the treatment of pulmonary nodules, especially stereotactic body radiotherapy (SBRT) and interventional pulmonology technologies, and provide a range of recommendations based on our expertise and experience. SUMMARY: Interventional pulmonology is an increasingly important approach for the management of pulmonary nodules. While more studies are needed to fully evaluate its long-term outcomes and benefits, the available evidence suggests that this technique can provide a minimally invasive and effective alternative for treating small malignancies in selected patients. We conducted a systematic literature review in PubMed, designed a framework to include the advances in surgery, SBRT, and interventional pulmonology for the treatment of pulmonary nodules, and provided a range of recommendations based on our expertise and experience. KEY MESSAGES: As such, alternative therapeutic options such as SBRT and ablation are becoming increasingly important and viable. With recent advancements in bronchoscopy techniques, ablation via bronchoscopy has emerged as a promising option for treating pulmonary nodules. This study reviewed the advances of interventional pulmonology in the treatment of peripheral lung cancer patients that are not surgical candidates. We also discussed the challenges and limitations associated with ablation, such as the risk of complications and the potential for incomplete nodule eradication. These advancements hold great promise for improving the efficacy and safety of interventional pulmonology in treating pulmonary nodules.

13.
World J Clin Oncol ; 15(1): 45-61, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292659

RESUMO

BACKGROUND: Heat shock protein A4 (HSPA4) belongs to molecular chaperone protein family which plays important roles within variable cellular activities, including cancer initiation and progression. However, the prognostic and immunological significance of HSPA4 in lung adenocarcinoma (LUAD) has not been revealed yet. AIM: To explore the prognostic and immunological roles of HSPA4 to identify a novel prognostic biomarker and therapeutic target for LUAD. METHODS: We assessed the prognostic and immunological significance of HSPA4 in LUAD using data from The Cancer Genome Atlas database. The association between HSPA4 expression and clinical-pathological features was assessed through Kruskal-Wallis and Wilcoxon signed-rank test. Univariate/multivariate Cox regression analyses and Kaplan-Meier curves were employed to evaluate prognostic factors, including HSPA4, in LUAD. Gene set enrichment analysis (GSEA) was conducted to identify the key signaling pathways associated with HSPA4. The correlation between HSPA4 expression and cancer immune infiltration was evaluated using single-sample gene set enrichment analysis (ssGSEA). RESULTS: Overexpressing HSPA4 was significantly related to advanced pathologic TNM stage, advanced pathologic stage, progression disease status of primary therapy outcome and female subgroups with LUAD. In addition, increased HSPA4 expression was found to be related to worse disease-specific survival and overall survival. GSEA analysis indicated a significant correlation between HSPA4 and cell cycle regulation and immune response, particularly through diminishing the function of cytotoxicity cells and CD8 T cells. The ssGSEA algorithm showed a positive correlation between HSPA4 expression and infiltrating levels of Th2 cells, while a negative correlation was observed with cytotoxic cell infiltration levels. CONCLUSION: Our findings indicate HSPA4 is related to prognosis and immune cell infiltrates and may act as a novel prognostic biomarker and therapeutic target for LUAD.

14.
Reprod Biol Endocrinol ; 22(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169395

RESUMO

BACKGROUND: Neuroepithelial transforming gene 1 (NET1) is a RhoA subfamily guanine nucleotide exchange factor that governs a wide array of biological processes. However, its roles in meiotic oocyte remain unclear. We herein demonstrated that the NET1-HACE1-RAC1 pathway mediates meiotic defects in the progression of oocyte maturation. METHODS: NET1 was reduced using a specific small interfering RNA in mouse oocytes. Spindle assembly, chromosomal alignment, the actin cap, and chromosomal spreads were visualized by immunostaining and analyzed under confocal microscopy. We also applied mass spectroscopy, and western blot analysis for this investigation. RESULTS: Our results revealed that NET1 was localized to the nucleus at the GV stage, and that after GVBD, NET1 was localized to the cytoplasm and predominantly distributed around the chromosomes, commensurate with meiotic progression. NET1 resided in the cytoplasm and significantly accumulated on the spindle at the MI and MII stages. Mouse oocytes depleted of Net1 exhibited aberrant first polar body extrusion and asymmetric division defects. We also determined that Net1 depletion resulted in reduced RAC1 protein expression in mouse oocytes, and that NET1 protected RAC1 from degradation by HACE1, and it was essential for actin dynamics and meiotic spindle formation. Importantly, exogenous RAC1 expression in Net1-depleted oocytes significantly rescued these defects. CONCLUSIONS: Our results suggest that NET1 exhibits multiple roles in spindle stability and actin dynamics during mouse oocyte meiosis.


Assuntos
Actinas , Fuso Acromático , Animais , Camundongos , Actinas/metabolismo , Meiose , Oncogenes , Oócitos/metabolismo , Fuso Acromático/metabolismo
15.
World J Pediatr ; 20(3): 250-258, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070095

RESUMO

BACKGROUND: Surgery plays an important role in the treatment of neuroblastoma. Perioperative complications may impact the course of neuroblastoma treatment. To date, comprehensive analyses of complications and risk factors have been lacking. METHODS: Patients with retroperitoneal neuroblastoma undergoing tumor resection were retrospectively analyzed between 2014 and 2021. The data collected included clinical characteristics, operative details, operative complications and postoperative outcomes. Risk factors for perioperative complications of retroperitoneal neuroblastoma were analyzed. RESULTS: A total of 571 patients were enrolled in this study. Perioperative complications were observed in 255 (44.7%) patients. Lymphatic leakage (28.4%), diarrhea (13.5%), and injury (vascular, nerve and organ; 7.5%) were the most frequent complications. There were three operation-related deaths (0.53%): massive hemorrhage (n = 1), biliary tract perforation (n = 1) and intestinal necrosis (n = 1). The presence of image-defined risk factors (IDRFs) [odds ratio (OR) = 2.09, P < 0.01], high stage of the International Neuroblastoma Risk Group staging system (INRGSS) (OR = 0.454, P = 0.04), retroperitoneal lymph node metastasis (OR = 2.433, P = 0.026), superior mesenteric artery encasement (OR = 3.346, P = 0.003), and inferior mesenteric artery encasement (OR = 2.218, P = 0.019) were identified as independent risk factors for perioperative complications. CONCLUSIONS: Despite the high incidence of perioperative complications, the associated mortality rate was quite low. Perioperative complications of retroperitoneal neuroblastoma were associated with IDRFs, INRGSS, retroperitoneal lymph node metastasis and vascular encasement. Patients with high-risk factors should receive more serious attention during surgery but should not discourage the determination to pursue total resection of neuroblastoma. Video Abstract (MP4 94289 KB).


Assuntos
Neuroblastoma , Criança , Humanos , Estudos Retrospectivos , Incidência , Metástase Linfática , Neuroblastoma/epidemiologia , Neuroblastoma/cirurgia , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia , Estadiamento de Neoplasias
16.
Acta Pharmacol Sin ; 45(3): 490-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37935896

RESUMO

Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs). In an effort to search pathways downstream of GPCRs that might be involved in OPC differentiation, we discover that U73122, a phosphoinositide specific phospholipase C (PI-PLC) inhibitor, dramatically promotes OPC-to-OL differentiation and myelin regeneration in experimental autoimmune encephalomyelitis model. Unexpectedly, U73343, a close analog of U73122 which lacks PI-PLC inhibitory activity also promotes OL differentiation, while another reported PI-PLC inhibitor edelfosine does not have such effect, suggesting that U73122 and U73343 enhance OPC differentiation independent of PLC. Although the structures of U73122 and U73343 closely resemble 17ß-estradiol, and both compounds do activate estrogen receptors Erα and Erß with low efficacy and potency, further study indicates that these compounds do not act through Erα and/or Erß to promote OPC differentiation. RNA-Seq and bioinformatic analysis indicate that U73122 and U73343 may regulate cholesterol biosynthesis. Further study shows both compounds increase 14-dehydrozymostenol, a steroid reported to promote OPC differentiation, in OPC culture. In conclusion, the aminosteroids U73122 and U73343 promote OPC-to-OL generation and myelin formation by regulating cholesterol biosynthesis pathway.


Assuntos
Estrenos , Receptor alfa de Estrogênio , Bainha de Mielina , Pirrolidinonas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular , Colesterol/metabolismo
17.
IEEE Trans Biomed Eng ; 71(4): 1247-1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039165

RESUMO

OBJECTIVE: Organ failure is a leading cause of mortality in hospitals, particularly in intensive care units. Predicting organ failure is crucial for clinical and social reasons. This study proposes a dual-keyless-attention (DuKA) model that enables interpretable predictions of organ failure using electronic health record (EHR) data. METHODS: Three modalities of medical data from EHR, namely diagnosis, procedure, and medications, are selected to predict three types of vital organ failures: heart failure, respiratory failure, and kidney failure. DuKA utilizes pre-trained embeddings of medical codes and combines them using a modality-wise attention module and a medical concept-wise attention module to enhance interpretation. Three organ failure tasks are addressed using two datasets to verify the effectiveness of DuKA. RESULTS: The proposed multi-modality DuKA model outperforms all reference and baseline models. The diagnosis history, particularly the presence of cachexia and previous organ failure, emerges as the most influential feature in organ failure prediction. CONCLUSIONS: DuKA offers competitive performance, straightforward model interpretations and flexibility in terms of input sources, as the input embeddings can be trained using different datasets and methods. SIGNIFICANCE: DuKA is a lightweight model that innovatively uses dual attention in a hierarchical way to fuse diagnosis, procedure and medication information for organ failure predictions. It also enhances disease comprehension and supports personalized treatment.


Assuntos
Insuficiência Cardíaca , Humanos , Unidades de Terapia Intensiva , Registros Eletrônicos de Saúde
18.
Food Chem ; 439: 138170, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118227

RESUMO

The carryover of trace allergens in complex food matrices poses challenges for detection techniques. Here, we demonstrate an accurate UPLC-MS/MS quantification assay for the shrimp allergen tropomyosin with a full-length isotope-labelled recombinant tropomyosin (TM-I) internal standard in complex food matrices. The TM-I, expressed based on the SILAC technique, exhibited a high isotope labelling ratio (>99%), purity, and alignment with the natural sequence. This method determined the tropomyosin ranging from 0.2 to 100 ng/mL. Mean recoveries ranged from 89 to 116%, with intra- and inter-day RSDs below 12%, for three signature peptides across three types of commercially processed food matrices. The limits of quantitation were 1 µg/g in pop food and sauce, and 10 µg/g in surimi product, respectively. This study supports the use of recombinant full-length isotope-labelled proteins rather than stable-isotope labelling peptides as internal standards to achieve more accurate quantitation of food allergens as the digestion error is corrected.


Assuntos
Hipersensibilidade Alimentar , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Tropomiosina , Espectrometria de Massa com Cromatografia Líquida , Alérgenos , Crustáceos , Peptídeos , Proteínas Recombinantes , Isótopos
19.
Food Res Int ; 174(Pt 1): 113628, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986479

RESUMO

Protein-bound Nε-(carboxymethyl)lysine (CML), an advanced glycation end product within meat products, poses a potential health risk to humans. The objective of this study was to explore the impact of various edible oils on the formation of protein-bound CML in roasted pork patties. Eleven commercially edible oils including lard oil, corn oil, palm oil, olive oil, flaxseed oil, blended oil, camellia oil, walnut oil, soybean oil, peanut oil, and colza oil were added to pork tenderloin mince, respectively, at a proportion of 4 % to prepare raw pork patties. The protein-bound CML contents in the pork patties were determined by HPLC-MS/MS before and after roasting at 200 °C for 20 min. The results indicated that walnut oil, flaxseed oil, colza oil, olive oil, lard oil, corn oil, blended oil, and palm oil significantly reduced the accumulation of protein-bound CML in pork patties, of which the inhibition rate was in the 24.43 %-37.96 % range. Moreover, the addition of edible oil contributed to a marginal reduction in the loss of lysine. Meanwhile, glyoxal contents in pork patties were reduced by 16.72 %-43.21 % after roasting. Other than blend oil, all the other edible oils restrained protein oxidation in pork patties to varying degrees (between 20.16 % and 61.26 %). In addition, camellia oil, walnut oil, and flaxseed oil increased TBARS values of pork patties by 2.2-8.6 times when compared to the CON group. After analyzing the fatty acid compositions of eleven edible oils, five main fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid) were selected to establish Myofibrillar protein-Glucose-fatty acids systems to simulate the roasting process. The results showed that palmitic acid, oleic acid, linoleic acid, and linolenic acid obviously mitigated the formation of myofibrillar protein-bound CML, exhibiting suppression rates ranging from 10.38 % to 40.32 %. In conclusion, the addition of specific edible oil may curb protein-bound CML production in roasted pork patty by restraining protein or lipid oxidation, reducing lysine loss, and suppressing glyoxal production, which may be attributed to the fatty acid compositions of edible oils. This finding provides valuable guidance for the selection of healthy roasting oils in the thermal processing of meat products.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Humanos , Suínos , Azeite de Oliva , Óleo de Semente do Linho , Lisina , Óleo de Milho , Espectrometria de Massas em Tandem , Óleos de Plantas , Ácido Linoleico , Ácido Palmítico , Ácido Oleico , Glioxal , Ácidos Linolênicos
20.
Front Immunol ; 14: 1290968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022627

RESUMO

Background: As a severe hematological malignancy in adults, acute myeloid leukemia (AML) is characterized by high heterogeneity and complexity. Emerging evidence highlights the importance of the tumor immune microenvironment and lipid metabolism in cancer progression. In this study, we comprehensively evaluated the expression profiles of genes related to lipid metabolism and immune modifications to develop a prognostic risk signature for AML. Methods: First, we extracted the mRNA expression profiles of bone marrow samples from an AML cohort from The Cancer Genome Atlas database and employed Cox regression analysis to select prognostic hub genes associated with lipid metabolism and immunity. We then constructed a prognostic signature with hub genes significantly related to survival and validated the stability and robustness of the prognostic signature using three external datasets. Gene Set Enrichment Analysis was implemented to explore the underlying biological pathways related to the risk signature. Finally, the correlation between signature, immunity, and drug sensitivity was explored. Results: Eight genes were identified from the analysis and verified in the clinical samples, including APOBEC3C, MSMO1, ATP13A2, SMPDL3B, PLA2G4A, TNFSF15, IL2RA, and HGF, to develop a risk-scoring model that effectively stratified patients with AML into low- and high-risk groups, demonstrating significant differences in survival time. The risk signature was negatively related to immune cell infiltration. Samples with AML in the low-risk group, as defined by the risk signature, were more likely to be responsive to immunotherapy, whereas those at high risk responded better to specific targeted drugs. Conclusions: This study reveals the significant role of lipid metabolism- and immune-related genes in prognosis and demonstrated the utility of these signature genes as reliable bioinformatic indicators for predicting survival in patients with AML. The risk-scoring model based on these prognostic signature genes holds promise as a valuable tool for individualized treatment decision-making, providing valuable insights for improving patient prognosis and treatment outcomes in AML.


Assuntos
Leucemia Mieloide Aguda , Metabolismo dos Lipídeos , Adulto , Humanos , Metabolismo dos Lipídeos/genética , Prognóstico , Leucemia Mieloide Aguda/genética , Biologia Computacional , Sistemas de Liberação de Medicamentos , Microambiente Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Esfingomielina Fosfodiesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA