Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(16): 11217-11231, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38590351

RESUMO

The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.

2.
Waste Manag ; 171: 365-374, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37757615

RESUMO

Incineration of organic solid wastes is accompanied by the heavy metal emission through flue gas. As an inexpensive and efficient heavy metal adsorbent, the improvement of kaolinite adsorption performance for heavy metals has drawn widespread interests. In this work, the interaction mechanisms between various kaolinite surfaces and Cd/Pb species are explored through first principles calculations. The results show that the combination of Fe doping and dehydroxylation enhances the activity of kaolinite surfaces, analysis of adsorption configurations reveal that both Cd and Pb species are immobilized through chemisorption on the -H + Fe surface. At the microscopic level, further electronic structure analysis shows that the composite modified kaolinite surface has more electron transfer and more pronounced orbital hybridization and overlap compared to the original kaolinite surface, demonstrating that the modification means of dehydroxylation and Fe doping indeed enhanced the activity of the kaolinite surface, especially the activity of the O atoms in the vicinity of the Fe atom and that the O atoms are more efficiently bonded as ionic connecting Cd/Pb species for the purpose of trapping Cd/Pb species. This study points out the research direction and provides basic theoretical support for the development of new kaolinite adsorbents in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA