Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Mol Oncol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750006

RESUMO

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.

2.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
3.
Environ Toxicol ; 39(6): 3381-3388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445413

RESUMO

Osteoporosis is a common bone disease in aging populations, particularly in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are linked with a variety of adverse effects. Antrodia cinnamomea extracts (ACE) are highly renowned for their anticancer, antioxidative, and anti-inflammatory properties. However, whether ACE-enriched anti-osteoporosis functions are largely unknown. In a preclinical animal model, we found that ovariectomy significantly decreased bone volume in the ovariectomized (OVX) rats. Administration of ACE antagonized OVX-induced bone loss. In addition, ACE reversed OVX-reduced biomechanical properties. The serum osteoclast marker also showed improvement in the ACE-treated group. In the cellular model, it was indicated that ACE inhibits RANKL-induced osteoclast formation. Taken together, ACE seems to be a hopeful candidate for the development of novel anti-osteoporosis treatment.


Assuntos
Osteoclastos , Osteoporose , Ovariectomia , Ratos Sprague-Dawley , Animais , Feminino , Osteoclastos/efeitos dos fármacos , Osteoporose/prevenção & controle , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Camundongos , Ratos , Células RAW 264.7 , Polyporales/química , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/tratamento farmacológico , Ligante RANK
4.
Heliyon ; 10(2): e24438, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312542

RESUMO

The present study investigated the potential anti-obesity properties of Citrus depressa Hayata (CDH) juice in HBV transgenic mice, as well as the impact of fermentation on the effectiveness of the juice. The results revealed that fermentation increased the levels of polyphenols and hesperidin in CDH juice. The animal study demonstrated that both juices were effective in mitigating the weight gain induced by a high-fat diet by correcting metabolic parameter imbalances, reducing hepatic lipid accumulation, and reversing hepatic immune suppression. Furthermore, fermented juice exhibited superior efficacy in managing body weight and inhibiting the expansion of white adipose tissue (WAT). Fermented juice significantly enhanced adiponectin production and PPARγ expression in WAT, while also reducing hypertrophy. This study offers valuable insights into the potential role of CDH juices in combating obesity associated with high fat consumption and underscores the promise of CDH juice as a functional beverage.

5.
Nat Cancer ; 5(3): 400-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267627

RESUMO

Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Proliferação de Células , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Gencitabina , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo , Proteínas ADAM/uso terapêutico
6.
Sci Rep ; 13(1): 20265, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985810

RESUMO

Antrodia cinnamomea (AC) is a treasured Asian medicinal mushroom, which has attracted attention due to recent research on its effectiveness in targeting a variety of serious ailments such as cancer and liver diseases. Among different A. cinnamomea constituents, triterpenoids are regarded as the most therapeutically attractive components because of their anti-inflammatory and cytotoxic activities. In the present study, we proposed a mathematical and statistical extraction protocol to evaluate the concentrations of total ergostane and lanostane triterpenoid derivatives from the ethanolic extract of the wild fruiting bodies of A. cinnamomea (EEAC) by utilizing response surface methodology (RSM) and quantitative NMR (qNMR) approaches. The optimum response surface model showed that the variations of the investigated response variables reached more than 90%, suggesting that the developed model is accurate in explaining response variability. Furthermore, the EEAC major characteristic triterpenoids were quantified through the comparison of the HPLC-tandem MS results with those of the qNMR results. The precision of the used techniques was also evaluated. The experimental design of the EEAC optimum extraction procedure obtained by using RSM and qNMR enabled accurate characterization and quantitation of A. cinnamomea triterpenoids.


Assuntos
Agaricales , Polyporales , Triterpenos , Triterpenos/química , Carpóforos/química , Agaricales/química
7.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831555

RESUMO

Globally, breast cancer is the most common cause of cancer deaths. In Taiwan, it is the most prevalent cancer among females. Since San-Huang-Xie-Xin-Tang (SHXXT) exerts not only an anti-inflammatory but an immunomodulatory effect, it may act as a potent anti-tumor agent. Herein, the study aimed to explore the influence of SHXXT and its constituents on the mortality rate among breast cancer patients in Taiwan regarding the component effect and the dose-relationship effect. By using the Taiwan National Health Insurance (NHI) Research Database (NHIRD), the study analyzed 5387 breast cancer patients taking Chinese herbal medicine (CHM) and 5387 breast cancer patients not using CHM. CHM means SHXXT and its constituents in the study. The Kaplan-Meier method was utilized to determine the mortality probabilities among patients. Whether the CHM influences the mortality rate among patients was estimated by Cox proportional hazard regression analysis. The use of CHM could lower the cancer mortality rate by 59% in breast cancer patients. The protective effect was parallel to the cumulative days of CHM use and the annual average CHM dose. In addition, the mortality rate was lower in patients who used SHXXT compared to those who only used one of its constituents. SHXXT and its constituents were all promising therapeutic weapons against breast cancer.

8.
Mar Drugs ; 21(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36827165

RESUMO

The chemical screening of a cultured soft coral, Briareum violaceum, led to the isolation of eight natural, briarane-related diterpenoids, including three unreported metabolites, briavioids E-G (1-3), and five known briaranes, briacavatolides B (4) and C (5), briaexcavatin L (6), briaexcavatolide U (7) and briarenol K (8). The structures of briaranes 1-8 were established using spectroscopic methods. The absolute configuration of briavioid A (9), obtained in a previous study, was reported for the first time in this study by a single-crystal X-ray diffraction analysis using a copper radiation source. The anti-inflammatory activity of briaranes 1 and 2 and briaranes 4-8 was evaluated by screening their inhibitory ability against the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells.


Assuntos
Antozoários , Diterpenos , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Macrófagos/metabolismo , Diterpenos/farmacologia , Antozoários/química , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
9.
Front Pharmacol ; 14: 1281067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293667

RESUMO

Small molecule compounds targeting multiple kinases involved in neoangiogenesis have shown survival benefits in patients with unresectable hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective response rate. Lipid conjugates have been used to improve delivery efficacy or pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral feeding of linoleate-fluorescein isothiocyanate conjugates showed that the compound was well distributed in a spontaneous HCC mouse model. Therefore, a rationale design was developed for chemically synthesizing a linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly improved cytotoxicity compared to the parental drug pazopanib. Pazopanib's angiogenic suppressing signals were not observed in LAPC-treated HCC cells, potentially suggesting an altered mechanism of action (MOA). In an efficacy trial comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC treatment demonstrated superior tumor ablating capacity in comparison to both placebo and pazopanib treatments, without any discernible systemic toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors. Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA. The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of great academic interest. Further comprehensive preclinical trials (e.g., chemical-manufacture-control, toxicity, distribution, and pharmacokinetics/pharmacodynamics) are expected.

10.
Nutrients ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807786

RESUMO

Osteoarthritis (OA) is an age-related disorder that affects the joints and causes functional disability. Hericium erinaceus is a large edible mushroom with several known medicinal functions. However, the therapeutic effects of H. erinaceus in OA are unknown. In this study, data from Sprague-Dawley rats with knee OA induced by anterior cruciate ligament transection (ACLT) indicated that H. erinaceus mycelium improves ACLT-induced weight-bearing asymmetry and minimizes pain. ACLT-induced increases in articular cartilage degradation and bone erosion were significantly reduced by treatment with H. erinaceus mycelium. In addition, H. erinaceus mycelium reduced the synthesis of proinflammatory cytokines interleukin-1ß and tumor necrosis factor-α in OA cartilage and synovium. H. erinaceus mycelium shows promise as a functional food in the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Modelos Animais de Doenças , Hericium , Micélio , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Ratos , Ratos Sprague-Dawley
11.
Cancer Med ; 11(14): 2824-2835, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545835

RESUMO

INTRODUCTION: Gastric cancer (GCa) is a malignancy with few effective treatments. Ursolic acid (UA), a bioactive triterpenoid enriched in Hedyotis diffusa Willd, known to suppress GCa without identified target. CYP19A1 (cytochrome P450 family 19A1; also known as aromatase, Ar) was correlated to GCa prognosis. Relatedly, Ar silencers, which halt the expression of Ar exhibited anti-GCa effects in experimental models, are currently being investigated. METHOD: The docking simulation score of UA was compared with Ar inhibitors, e.g., letrozole, exemestane, in Ar protein crystallization. Hedyotis diffusa Willd ethanol extract, UA, or 5-fluracil were applied onto AGS, SC-M1, MKN45 GCa cells for cancer inhibition tests. Immunoblot for measuring gene expressions upon drug treatments, or gene knockdown/overexpression. Treatments were also applied in a MKN45 implantation tumor model. A web-based GCa cohort for Ar expression association with prognosis was performed. RESULT: The ethanol extracts of Hedyotis diffusa Willd, enrich with UA, exhibited cytotoxic activity against GCa cells. Molecular docking simulations with the 3D Ar structure revealed an excellent fitting score for UA. UA increase cytotoxic, and suppressed colony, in addition to its Ar silencing capacity. Moreover, UA synergistically facilitated 5-FU, (a standard GCa treatment) regimen in vitro. Consistent with those results, adding estradiol did not reverse the cancer-suppressing effects of UA, which confirmed UA acts as an Ar silencer. Furthermore, UA exhibited tumor-suppressing index (TSI) score of 90% over a 6-week treatment term when used for single dosing in xenograft tumor model. In the clinical setting, Ar expression was found to be higher in GCa tumors than normal parental tissue from the TCGA (The Cancer Genome Atlas) cohort, while high Ar expression associated with poor prognosis. Together, the results indicate UA could be used to treat GCa by silencing Ar expression in GCa. Hedyotis diffusa Willd ethanol extract could be an functional food supplements.


Assuntos
Antineoplásicos , Aromatase , Hedyotis , Neoplasias Gástricas , Triterpenos , Animais , Antineoplásicos/farmacologia , Aromatase/genética , Etanol , Fluoruracila , Hedyotis/química , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Triterpenos/farmacologia , Ácido Ursólico
12.
J Ethnopharmacol ; 292: 115146, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35304272

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease, but currently has no specific medication in clinic. Antrodia cinnamomea (AC) is a medicinal fungus and it has been shown that AC can inhibit high fat diet (HFD)-induced lipid deposition in mouse livers, but the effective monomer in AC and mechanism against NAFLD remain unclear. It has been reported that aldehyde dehydrogenase 2 (ALDH2) activation shows protective effects on NAFLD. Our previous study demonstrates that AC and its monomer dehydroeburicoic acid (DEA) can upregulate the ALDH2 activity on alcoholic fatty liver disease mouse model, but it is not clear whether the anti-NAFLD effects of AC and DEA are mediated by ALDH2. AIM TO STUDY: To elucidate the active compound in AC against NAFLD, study whether ALDH2 mediates the anti-NAFLD effects of AC and its effective monomer. MATERIALS AND METHODS: WT mice, ALDH2-/- mice and ALDH2-/- mice re-expressed ALDH2 by lentivirus were fed with a methionine-choline deficient (MCD) diet or high fat diet (HFD) to induce NAFLD, and AC at the different doses (200 and/or 500 mg/kg body weight per day) was administrated by gavage at the same time. Primary hepatocytes derived from WT and ALDH2-/-mice were stimulated by oleic acid (OA) to induce lipid deposition, and the cells were treated with AC or DEA in the meantime. Lentivirus-mediated ALDH2-KD or ALDH2-OE were used to knock down or overexpress ALDH2 expression in HepG2 cells, respectively. Finally, the effects of DEA against NAFLD as well as its effects on upregulating liver ALDH2 and removing the harmful aldehyde 4-hydroxynonenal (4-HNE) were studied in the MCD diet-induced NAFLD mouse model. RESULTS: In WT mice fed with a MCD diet or HFD, AC administration reduced hepatic lipid accumulation, upregulated ALDH2 activity in mouse livers, decreased 4-HNE contents both in mouse livers and serum, inhibited lipogenesis, inflammation and oxidative stress and promoted fatty acid ß-oxidation. These effects were abolished in ALDH2 KO mice but could be restored by re-expression of ALDH2 by lentivirus. In primary hepatocytes of WT mice, AC and DEA inhibited OA-induced lipid accumulation and triglyceride (TG) synthesis, promoting the ß-oxidation of fatty acid in the meantime. However, these effects were lost in primary hepatocytes of ALDH2 KO mice. Moreover, the expression level of ALDH2 significantly affected the inhibitory effects of AC and DEA on OA-induced lipid deposition in HepG2 cells. The effects of AC and DEA on suppressing lipid deposition, inhibiting mitochondrial ROS levels, reducing TG synthesis, and promoting ß-oxidation of fatty acid were all enhanced with the overexpression of ALDH2 and reduced with the knockdown of ALDH2 expression. DEA showed dose-dependent effects on inhibiting liver lipid deposition, elevating ALDH2 activity and reducing 4-HNE levels in the livers of MCD diet-induced NAFLD mice. CONCLUSION: DEA is the effective compound in AC against NAFLD. The related anti-NAFLD mechanisms of AC and DEA were through upregulating ALDH2 expression and activity, thus enhancing the elimination of 4-HNE in the livers, and sequentially alleviating oxidative stress and inflammation, promoting fatty acid ß-oxidation and decreasing lipogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Inflamação/tratamento farmacológico , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Metabolismo dos Lipídeos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polyporales
13.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163790

RESUMO

Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.


Assuntos
Aurora Quinase A/metabolismo , Benzilisoquinolinas/administração & dosagem , Cisplatino/administração & dosagem , Adutos de DNA/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Animais , Aurora Quinase A/química , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Anticancer Res ; 42(2): 845-855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093882

RESUMO

BACKGROUND/AIM: The poor prognosis and chemoresistance of patients with triple-negative breast cancer (TNBC) urge the development of new therapeutic strategies. Snail mucus has shown its ability against inflammation, a process closely related to tumorigenesis, suggesting a potential anti-cancer activity. MATERIALS AND METHODS: The effect and mechanisms of snail mucus on cell viability were determined by IncuCyte Live-cell analysis and molecular biological methods. The anti-cancer fractions of snail mucus were isolated and identified by medium pressure liquid chromatography (MPLC) and nuclear magnetic resonance (NMR) spectrometry analysis. RESULTS: Snail mucus significantly decreased the viability of TNBC cells with relatively lower cytotoxicity to normal breast epithelial cells and enhanced their response to chemotherapy through activation of Fas signaling by suppressing nucleolin. Two peptide fractions have been identified as the anti-cancer ingredients of the snail mucus. CONCLUSION: Snail mucus can induce programmed cell death via the extrinsic apoptotic pathway and has therapeutic potential by achieving a chemo-sensitizing effect in TNBCs.


Assuntos
Antineoplásicos/farmacologia , Muco , Transdução de Sinais/efeitos dos fármacos , Caramujos , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor fas/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Muco/química , Muco/metabolismo , Caramujos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
15.
Nat Prod Res ; 36(12): 3043-3053, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34498976

RESUMO

Juncus effusus L. (J. effusus) is a Traditional Chinese Medicine (TCM) that has long been used for dealing with gynaecological disorders, such as relieving insomnia, preventing tinnitus, reducing edema with diuretic effect. In our course of evidence-based medical research focused on this herb, one new phenanthrene, Junfusol B (2), together with seventeen known compounds were isolated and identified. All the structures of these compounds were elucidated by spectroscopic methods. The absolute stereochemistry of compounds 1 and 2 was further determined by comparing their calculated and experimental Electronic Circular Dichroism (ECD) spectra and optical rotation (OR) values. The isolates were evaluated for their estrogenic and anti-inflammatory activities which were considered as relevant etiological factors of insomnia, tinnitus and edema in the ancient TCM theory. The results revealed that most of the obtained phenanthrenes in this work were found exerting agonistic effects on estrogen receptor. This is the first report to declare the exact estrogen-regulating potential among this type of compounds from J. effusus. Moreover, phenanthrenes 3 - 7 exhibited significant inhibitions on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophilic inflammation model. J. effusus may be developed as a complementary agent utilized in menopausal multiple syndromes.


Assuntos
Magnoliopsida , Fenantrenos , Distúrbios do Início e da Manutenção do Sono , Zumbido , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Edema , Humanos , Magnoliopsida/química , Fenantrenos/química , Fenantrenos/farmacologia
16.
Chem Biol Drug Des ; 99(1): 126-135, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411446

RESUMO

Aurora kinase A (AURKA) carries out an essential role in proliferation and involves in cisplatin resistance in various cancer cells. Overexpression of AURKA is associated with the poor prognosis of cancer patients. Thus, AURKA has been considered as a target for cancer therapy. Developing AURKA inhibitors became an important issue in cancer therapy. A natural compound emodin mainly extracted from rhubarbs possesses anti-cancer properties. However, the effect of emodin on AURKA has never been investigated. In the present study, molecular docking analysis indicated that emodin interacts with AURKA protein active site. We also found nine emodin analogues from Key Organic database by using ChemBioFinder software. Among that, one analogue 8L-902 showed a similar anti-cancer effect as emodin. The bindings of emodin and 8L-902 on AURKA protein were confirmed by cellular thermal shift assay. Furthermore, emodin inhibited the AURKA kinase activity in vitro and enhanced the cisplatin-DNA adduct level in a resistant ovarian cancer cell line. It seems that emodin may have the potential to inhibit cancer cell growth and enhance cisplatin therapy in cancer with resistance. Collectively, our finding reveals a novel AURKA inhibitor, emodin, which may be vulnerable to ovarian cancer therapy in the future.


Assuntos
Antraquinonas/química , Aurora Quinase A/antagonistas & inibidores , Emodina/análogos & derivados , Inibidores de Proteínas Quinases/química , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Aurora Quinase A/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/análise , Cisplatino/química , Cisplatino/farmacologia , Adutos de DNA/análise , Bases de Dados de Compostos Químicos , Emodina/metabolismo , Emodina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Projetos Piloto , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Temperatura
17.
J Food Biochem ; 46(1): e14022, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841538

RESUMO

Antrodia cinnamomea is a well-known medicinal mushroom in Taiwan that exhibits anti-inflammatory biological activities. In rheumatoid arthritis (RA), chronic inflammation and angiogenesis driven by proinflammatory cytokines reflect the severity of the disease. Although biological treatments have improved the outlook for RA, no healing exists. Moreover, the available pharmacotherapies do not work for all patients and drug safety is a major consideration. Investigations into plant-based medicines hope to reveal better, more tolerable agents. We examined whether Antcin K, a phytosterol isolated from A. cinnamomea, has anti-angiogenic activity in RA. The GSE12021 gene dataset from the Gene Expression Omnibus (GEO) database was examined for levels of vascular endothelial growth factor (VEGF) expression in 10 RA and 10 osteoarthritis (OA) synovial tissue samples. In clinical samples, VEGF expression was analyzed by immunohistochemical staining and ELISA in normal and RA synovial tissue, as well as OA and RA synovial fluid. Collagen-induced arthritis (CIA) and control tissue was stained with hematoxylin and eosin (H&E) for histological changes; Safranin O/Fast Green staining examined histopathological changes and evidence of bone erosion. Human RA synovial fibroblasts (RASFs) were incubated with Antcin K and cell viability was examined by the MTT assay. VEGF mRNA expression was detected in RASFs using qPCR. Antcin K significantly inhibited VEGF expression and ameliorates endothelial progenitor cell (EPC) migration and tube formation in RASFs by downregulating the phospholipase C-γ/protein kinase C-α pathway. Antcin K also induced anti-angiogenic effects in human RASFs without cytotoxicity. PRACTICAL APPLICATIONS: Analysis of GEO dataset samples and human synovial fluids or synovial tissues revealed higher VEGF levels in rheumatoid arthritis (RA) samples compared with osteoarthritis (OA) and healthy control samples. VEGF levels were also higher in mice with collagen-induced arthritis (CIA) than in healthy controls. Antcin K markedly suppressed VEGF expression in human RA synovial fibroblasts and inhibited the migration and tube formation of epithelial progenitor cells (EPCs) by downregulating the phospholipase C-γ/protein kinase C-α pathway. Further investigations are warranted to examine the effects of Antcin K in other angiogenesis-associated disorders.


Assuntos
Artrite Reumatoide , Fator A de Crescimento do Endotélio Vascular , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Colestenos , Fibroblastos , Humanos , Camundongos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Nutrients ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34444960

RESUMO

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Hesperidina/química , Hesperidina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
19.
Stem Cell Res Ther ; 12(1): 369, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187574

RESUMO

BACKGROUND: The cerebellum is the sensitive region of the brain to developmental abnormalities related to the effects of oxidative stresses. Abnormal cerebellar lobe formation, found in Jun dimerization protein 2 (Jdp2)-knockout (KO) mice, is related to increased antioxidant formation and a reduction in apoptotic cell death in granule cell progenitors (GCPs). Here, we aim that Jdp2 plays a critical role of cerebellar development which is affected by the ROS regulation and redox control. OBJECTIVE: Jdp2-promoter-Cre transgenic mouse displayed a positive signal in the cerebellum, especially within granule cells. Jdp2-KO mice exhibited impaired development of the cerebellum compared with wild-type (WT) mice. The antioxidation controlled gene, such as cystine-glutamate transporter Slc7a11, might be critical to regulate the redox homeostasis and the development of the cerebellum. METHODS: We generated the Jdp2-promoter-Cre mice and Jdp2-KO mice to examine the levels of Slc7a11, ROS levels and the expressions of antioxidation related genes were examined in the mouse cerebellum using the immunohistochemistry. RESULTS: The cerebellum of Jdp2-KO mice displayed expression of the cystine-glutamate transporter Slc7a11, within the internal granule layer at postnatal day 6; in contrast, the WT cerebellum mainly displayed Sla7a11 expression in the external granule layer. Moreover, development of the cerebellar lobes in Jdp2-KO mice was altered compared with WT mice. Expression of Slc7a11, Nrf2, and p21Cip1 was higher in the cerebellum of Jdp2-KO mice than in WT mice. CONCLUSION: Jdp2 is a critical regulator of Slc7a11 transporter during the antioxidation response, which might control the growth, apoptosis, and differentiation of GCPs in the cerebellar lobes. These observations are consistent with our previous study in vitro.


Assuntos
Cerebelo , Células-Tronco Neurais , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Camundongos Transgênicos
20.
Planta ; 253(6): 116, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956231

RESUMO

MAIN CONCLUSION: We discovered and identified a series of characteristic substances, including one new polyketide, epicorepoxydon B, of the important pathogenic fungus, Epicoccum sorghinum, of sorghum. The fungal extract and some isolated polyketides are sensitive to a malignant triple-negative breast cancer cell line, MDA-MB-231. Sorghum (Kaoliang) grain is an important crop with high economic value and several applications. In Taiwan, sorghum has been used in the wine industry, and "Kinmen Kaoliang Liquor" is a well-known Asian brand. Fungal contamination is one of the major threats affecting the production of sorghum grain resulting in economic losses as well as human and animal health problems. Several fungal species can infect sorghum grain and generate some toxic secondary metabolites. Epicoccum sorghinum is one of the major fungal contaminants of sorghum grains and a potent producer of mycotoxins such as tenuazonic acid (TeA). However, except for TeA, few studies focused on chemical compounds produced by this fungus. To explore the potential biological and toxic effects of E. sorghinum, a chemical investigation was carried out on the ethyl acetate extract of the fungus because it showed cytotoxic activity against a triple-negative breast cancer cell line, MDA-MB-231 (54.82% inhibition at 20 µg/mL). One new polyketide, epicorepoxydon B (1), along with six known compounds including 4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydroxymethyl-2-cyclohexenl-one (2), epicorepoxydon A (3), 3-hydroxybenzyl alcohol (4), 6-methylsalicylic acid (5), gentisyl alcohol (6), and 6-(hydroxymethyl)benzene-1,2,4-triol (7) were obtained, and their structures were established by the interpretation of their MS and NMR spectroscopic data. The cytotoxic activity of all isolated polyketides 1-7 was evaluated, and compounds 2, 6, and 7 exhibited potent activities against A549, HepG2, and MDA-MB-231 human cancer cell lines with IC50 value ranging from 1.86 to 18.31 µM. The structure-activity relationship of the isolated compounds was proposed.


Assuntos
Ascomicetos , Policetídeos , Sorghum , Grão Comestível , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA