Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 73(1): 153-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744946

RESUMO

The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.


Assuntos
Carvão Vegetal/química , Peróxido de Hidrogênio/química , Ferro/química , Nitrobenzenos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Catálise , Compostos Férricos , Cinética , Oxirredução
2.
Bull Environ Contam Toxicol ; 82(2): 145-52, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19034373

RESUMO

As a popular fuel oxygenate, ethanol frequently co-occurs with petroleum hydrocarbons, including benzene, in groundwater that is contaminated by gasoline. Anaerobic pathways have been identified in benzene biodegradation. Limited reports focus on denitrifying degradation of benzene; however, the role of ethanol in this pathway is unknown. This study investigated the effects of ethanol on benzene degradation under denitrifying condition by using groundwater and sediment samples collected from locations with known history of benzene contamination. Results indicate that benzene can be biodegraded under denitrifying conditions. When concentrations of nitrate were in the range of 480-920 mg/L, there is a critical value in ethanol concentration:Ethanol at concentration less than the critical value enhanced the denitrifying degradation of benzene over a period of time; in contrast, ethanol at concentration higher than the critical value, which was degraded before benzene, demonstrated an inhibitory effect. And the critical value varied with nitrate concentration. It appears that the role of ethanol may be closely associated with its own and nitrate concentrations. Two mathematical equations were established based on the data and may be used to determine if ethanol presents an enhancing or inhibitory effect on denitrification of benzene. The roles of ethanol in COD/NO(3) (-)-N and the subsequent denitrification of benzene were also studied. An optimal COD/NO(3) (-)-N ratio of 1.32 was obtained for this testing system, in which the highest rate of benzene degradation can be achieved under denitrifying conditions.


Assuntos
Benzeno/química , Etanol/farmacologia , Nitritos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA