Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 609: 1-11, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890947

RESUMO

Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core-shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g-1 at 1 A g-1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg-1 at a power density of 739.8 W kg-1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.

2.
Front Chem ; 9: 780688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912783

RESUMO

Engineering the heterogeneous interface fusing MOFs and inorganic active component is an effective strategy to improve the electrochemical performance. Herein, we report a new Ni3-based MOF (denoted as CTGU-24) with an infrequent two-fold interpenetrating 3D (3,8)-connected network constructed from Ni(II) trimer and mixed tripodal tectonics for the electrocatalytic methanol oxidation reaction (MOR). In order to improve its stability and activities, the heterogeneous hybrid CTGU-24@NiOOH has been fabricated successfully via the first preparation of the NiOOH nanosphere and then in situ formation of CTGU-24 decorated on the NiOOH surface. Moreover, the integration of CTGU-24@NiOOH and different additives [acetylene black (AB) and ketjen black (KB)], resulting in the optimized hybrid sample AB&CTGU-24@NiOOH (4:4). It attains better MOR performance with an area-specific peak current density of 34.53 mA·cm-2 than pure CTGU-24 (14.99 mA·cm-2) and improved durability in an alkali medium. The new findings indicate that the CTGU-24@NiOOH heterostructure formed in situ and the integration of moderate additives are critical to optimizing and improving electrocatalytic activity of pure MOF crystalline material.

3.
ACS Appl Mater Interfaces ; 13(22): 26472-26481, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029052

RESUMO

Developing efficient metal-organic framework (MOF)-based electrocatalysts with improvable activity and persistence toward the methanol oxidation reaction (MOR) is attracting great research attention but still remains an enormous challenge. Herein, a facile strategy, hydrangea-shaped nickel hydroxide template-directed synthesis of the hierarchically structured Ni-MOF on the Ni(OH)2 heterocomposite (denoted as Ni-Ni) for efficient MOR, is developed. The unique hierarchical structure and synergistic effect of the heterocomposite afford more exposed active sites, a facile ion diffusion path, and improved conductivity, favorable for improving MOR catalytic performance. Remarkably, the optimized Ni-Ni-2 material delivers an excellent activity with a high peak current density (24.6 mA cm-2). Furthermore, to prove the universality of this strategy, NixCu1-x(OH)2 isometallic hydroxide was used as the precursor, and a series of MOF-74/CuxNi1-x(OH)2 (denoted as Ni-NiCu) heterogeneous materials have been prepared and could be used as an effective electrocatalyst to catalyze MOR. The results indicate that this strategy can be used in the synthesis of other new composite materials with specific hierarchical structures for a more efficient electrocatalytic system.

4.
Inorg Chem ; 59(7): 4764-4771, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207301

RESUMO

Understanding the active species derived from metal-organic frameworks (MOFs) plays a vital role in the fabrication of highly efficient and stable oxygen evolution reaction (OER) electrocatalysts. Herein, a new alkaline-stable 3D nickel metal-organic framework (Ni-MOF), containing a 1D rod-packing chain structure fused with a tetranuclear nickel cluster [Ni4(µ3-OH)2], is used as a target material to explore its OER properties. The electrocatalytic activities of pure Ni-MOF and hybrid materials made from Ni-MOF with different acetylene black loaded electrodes, such as glassy carbon, fluorine-doped tin oxide, and nickel foam, have been evaluated. Further analysis unravels that the enhanced OER performance might be attributed to the synergistic interactions of two catalytic active species between in situ formed ß-Ni(OH)2 and a tetranuclear Ni4(µ3-OH)2 cluster in Ni-MOF. The findings will shed fresh light on the fabrication of MOF-derived catalysts for efficient electrochemical energy conversion.

5.
ACS Appl Mater Interfaces ; 10(15): 12740-12749, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29630342

RESUMO

The development of novel strategy to produce new porous carbon materials is extremely important because these materials have wide applications in energy storage/conversion, mixture separation, and catalysis. Herein, for the first time, a novel 3D carbon substrate with hierarchical pores derived from commercially available Cu-MOF (metal-organic framework) (HKUST-1) through carbonization and chemical etching has been employed as the catalysts' support. Highly dispersed Pt nanoparticles and amorphous nickel were evenly dispersed on the surface or embedded within carbon matrix. The corresponding optimal composite catalyst exhibits a high mass-specific peak current of 1195 mA mg-1 Pt and excellent poison resistance capacity ( IF/ IB = 1.58) for methanol oxidation compared to commercial Pt/C (20%). Moreover, both composite catalysts manifest outstanding properties in the reduction of nitrophenol and demonstrate diverse selectivities for 2/3/4-nitrophenol, which can be attributed to different integrated forms between active species and carbon matrix. This attractive route offers broad prospects for the usage of a large number of available MOFs in fabricating functional carbon materials as well as highly active carbon-based electrocatalysts and heterogeneous organic catalysts.

6.
Inorg Chem ; 56(22): 14111-14117, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29112391

RESUMO

Detecting formaldehyde at low operating temperature and maintaining long-term stability are of great significance. In this work, a hierarchical Co3O4 nanostructure has been fabricated by calcining Co5-based metal-organic framework (MOF) microcrystals. Co3O4-350 particles were used for efficient gas-sensing for the detecting of formaldehyde vapor at lower working temperature (170 °C), low detection limit of 10 ppm, and long-term stability (30 days), which not only is the optimal value among all reported pure Co3O4 sensing materials for the detection of formaldehyde but also is superior to that of majority of Co3O4-based composites. Such extraordinarily efficient properties might be resulted from hierarchically structures, larger surface area and unique pore structure. This strategy is further confirmed that MOFs, especially Co-clusters MOFs, could be used as precursor to synthesize 3D nanostructure metal oxide materials with high-performance, which possess high porosity and more active sites and shorter ionic diffusion lengths.

7.
Inorg Chem ; 56(3): 1402-1411, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28072525

RESUMO

New porous anionic Ln-MOFs, namely, [Me2NH2][Ln(CPA)2(H2O)2] (Ln = Eu, Gd), have been prepared through the self-assembly of 5-(4-carboxy phenyl)picolinic acid (H2CPA) and lanthanide ions. They feature open anionic frameworks with 1-D hydrophilic channels and exchangeable dimethylamine ions. The Eu phase could detect Fe3+ ions with high selectivity and sensitivity in either aqueous solution or biological condition. The ratios of lanthanide ions on this structure platform could be rationally tuned to not only achieve dichromatic emission colors with linear correlation but also attain three primary colors (RGB) and even white light with favorable correlated color temperature. Furthermore, the Ag(I)-exchanged phases can be readily reduced to afford Ag nanoparticles. The as-prepared Ag@Ln-MOFs composite shows highly efficient catalytic performance for the reduction of 4-nitrophenol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA