Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Innov ; 3(3): e114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947757

RESUMO

Histone deacetylase 6 (HDAC6) belongs to a class of epigenetic targets that have been found to be a key protein in the association between tumors and cardiovascular disease. Recent studies have focused on the crucial role of HDAC6 in regulating cardiovascular diseases such as atherosclerosis, myocardial infarction, myocardial hypertrophy, myocardial fibrosis, hypertension, pulmonary hypertension, and arrhythmia. Here, we review the association between HDAC6 and cardiovascular disease, the research progress of HDAC6 inhibitors in the treatment of cardiovascular disease, and discuss the feasibility of combining HDAC6 inhibitors with other therapeutic agents to treat cardiovascular disease.

2.
Bioorg Chem ; 137: 106578, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156135

RESUMO

Fibrosis affects the function of many organs and tissues, and its persistent development can lead to tissue sclerosis and cancer, even leading to death further. Recent studies suggested that enhancer of zeste homolog 2 (EZH2), a major regulator of epigenetic repression, played an important role in the occurrence and development of fibrosis through gene silencing or transcriptional activation. As the most studied and powerful pro-fibrotic cytokine closely related to EZH2, TGF-ß1 was primarily involved in the regulation of fibrosis along with the typical Smads and non-Smads signaling pathways. In addition, EZH2 inhibitors demonstrated inhibitory effects in several types of fibrosis. This review summarized the relationship underlying the action of EZH2, TGF-ß1/Smads, and TGF-ß1/non-Smads with fibrosis and described the research progress of EZH2 inhibitors in the treatment of fibrosis.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibrose , Transdução de Sinais , Ativação Transcricional
3.
RSC Med Chem ; 13(5): 594-598, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35694692

RESUMO

Two new Pt(iv) complexes featuring mesylate as the outer sphere anion, cis,trans,cis-[PtCl2(OH2)2(NH3)2](CH3SO3)2 (SPt-1) and cis,trans,cis-[PtCl2(OH2)2(1R,2R-DACH)](CH3SO3)2 (SPt-2), were synthesized and characterized by elemental analysis, 1H and 13C NMR, IR, and ESI-MS. Both complexes have excellent water-solubility, high molar conductivity and good water stability. They exhibit an irreversible two-electron reduction event with the peak potentials (E p) for the processes being -0.40 V for SPt-1 and -0.52 V for SPt-2. The biological tests reveal that SPt-2 possesses high in vitro anticancer activity against three human cancer cell lines (HCT-116, A549 and MKN-1) and its overall anticancer activity is slightly greater than that of oxaliplatin, whereas SPt-1 is less active than cisplatin. Moreover, the antitumor efficacy of SPt-2 on human colon carcinoma HCT-116 xenografts in nude mice is also greater than that of oxaliplatin, suggesting that SPt-2 deserves further evaluation as a prodrug for oxaliplatin.

4.
Eur J Med Chem ; 239: 114526, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716515

RESUMO

Myocardial injury is a nonnegligible problem in cardiovascular diseases and cancer therapy. The functional feature of N-containing heterocycles in the cardiovascular field has attracted much attention in recent years. Herein, we discovered a lead compound 12a containing 1,3,4-oxadiazole by extensive screening of anticancer derivatives containing nitrogen-heterocycle, which exhibited potential protective activity against oxidative stress in cardiomyocytes. Follow-up structure-activity relationship (SAR) studies also highlighted the role of substitution sites and bisamide moiety in enhancing the protective activity against oxidative stress. Specifically, compound 12d exhibited low cytotoxicity under high concentration and potent myocardial protection against oxidative stress in H9c2 cells. Preliminary mechanistic studies showed compound 12d could decrease the expression of cardiac hypertrophy and oxidative stress-related proteins/genes and reduce mitochondria-mediated cell apoptosis, thereby enhancing the cell vitality of injured cardiomyocytes. In this study, 1,3,4-oxadiazole may represent a novel pharmacophore that possesses potential myocardial protection and provides more choices for future optimization of cardiovascular drugs, especially for the treatment of onco-cardiology.


Assuntos
Cardiotônicos , Oxidiazóis , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Miócitos Cardíacos/metabolismo , Oxidiazóis/metabolismo , Oxidiazóis/farmacologia , Estresse Oxidativo
5.
Environ Pollut ; 265(Pt B): 114989, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32563807

RESUMO

This study aimed to investigate the relationship between outdoor, indoor, and personal PM2.5 exposure in the retired adults and explore the effects of potential determinants in two Chinese megacities. A longitudinal panel study was conducted in Nanjing (NJ) and Beijing (BJ), China, and thirty-three retired non-smoking adults aged 43-86 years were recruited in each city. Repeated measurements of outdoor-indoor-personal PM2.5 concentrations were measured for five consecutive 24-h periods during both heating and non-heating seasons using real-time and gravimetric methods. Time-activity and household characteristics were recorded. Mixed-effects models were applied to analyze the determinants of personal PM2.5 exposure. In total, 558 complete sets of collocated 24-h outdoor-indoor-personal PM2.5 concentrations were collected. The median 24-h personal PM2.5 exposure concentrations ranged from 43 to 79 µg/m3 across cities and seasons, which were significantly greater than their corresponding indoor levels (ranging from 36 to 68 µg/m3, p < 0.001), but significantly lower than outdoor levels (ranging from 43 to 95 µg/m3, p < 0.001). Indoor and outdoor PM2.5 concentrations were the strongest determinants of personal exposures in both cities and seasons, with RM2 ranging from 0.814 to 0.915 for indoor and from 0.698 to 0.844 for outdoor PM2.5 concentrations, respectively. The personal-outdoor regression slopes varied widely among seasons, with a pronounced effect in BJ (NHS: 0.618 ± 0.042; HS: 0.834 ± 0.023). Ventilation status, indoor PM2.5 sources, personal characteristics, and meteorological factors, were also found to influence personal exposure levels. The city and season-specific models developed here are able to account for 89%-93% of the variance in personal PM2.5 exposure. A LOOCV analysis showed an R2 (RMSE) of 0.80-0.90 (0.21-0.36), while a 10-fold CV analysis demonstrated a R2 (RMSE) of 0.83-0.90 (0.20-0.35). By incorporating potentially significant determinants of personal exposure, this modeling approach can improve the accuracy of personal PM2.5 exposure assessment in epidemiologic studies.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Pequim , China , Cidades , Exposição Ambiental/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
6.
Mediators Inflamm ; 2019: 4530534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565033

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease, and macrophages play a key role in all phases of AS. Recent studies have shown that miR-221 is a biomarker for AS and stroke; however, the role and mechanism of miR-221 in AS are unclear. Herein, we found that miR-221 and NCoR levels were decreased in ox-LDL-treated THP-1-derived macrophages. In contrast, DNMT3b, IL-6, and TNF-α expression levels were increased under these conditions. Upregulation of miR-221 or NCoR could partially inhibit ox-LDL-induced IL-6 and TNF-α expression. Further studies showed that DNMT3b was a target of miR-221. DNMT3b inhibition also suppressed IL-6 and TNF-α expression and increased NCoR expression in the presence of ox-LDL. Moreover, DNMT3b was involved in ox-LDL-induced DNA methylation in the promoter region of NCoR. These findings suggest that miR-221 suppresses ox-LDL-induced inflammatory responses via suppressing DNMT3b-mediated DNA methylation in the promoter region of NCoR. These results provide a rationale for using intracellular miR-211 as a possible antiatherosclerotic target.


Assuntos
Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Western Blotting , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células HEK293 , Humanos , Interleucina-6/metabolismo , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , DNA Metiltransferase 3B
7.
J Immunol Res ; 2018: 6249085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977930

RESUMO

Toll/IL-1R-domain-containing adaptor-inducing IFN-ß (TRIF) is an important adaptor for TLR3- and TLR4-mediated inflammatory signaling pathways. Recent studies have shown that TRIF plays a key role in vessel inflammation and atherosclerosis; however, the precise mechanisms are unclear. We investigated the mechanisms of the TRIF-regulated inflammatory response in RAW264.7 macrophages under oxidized low-density lipoprotein (ox-LDL) stimulation. Our data show that ox-LDL induces TRIF, miR-155, and BIC expression, activates the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways, and elevates the levels of IL-6 and TNF-α in RAW264.7 cells. Knockdown of TRIF using TRIF siRNA suppressed BIC, miR-155, IL-6, and TNF-α expression and inhibited the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways. Inhibition of ERK1/2 signaling also suppressed BIC and miR-155 expression. These findings suggest that TRIF plays an important role in regulating the ox-LDL-induced macrophage inflammatory response and that TRIF modulates the expression of BIC/miR-155 and the downstream SOCS1-STAT3-NF-κB signaling pathway via ERK1/2. Therefore, TRIF might be a novel therapeutic target for atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lipoproteínas LDL/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Inativação Gênica , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/fisiologia , Camundongos , MicroRNAs/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , NF-kappa B/metabolismo , Células RAW 264.7 , Precursores de RNA/metabolismo , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
8.
Sci Rep ; 5: 11232, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26177695

RESUMO

In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.


Assuntos
Nanopartículas , Material Particulado/química , Fuligem , Adesividade , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
9.
Wei Sheng Yan Jiu ; 31(5): 384-5, 2002 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-12572365

RESUMO

Titanium dioxide(TiO2) was used to catalyze the photolysis of benzene, xylene, n-heptane, methanol, acetone, ethylether, formaldehyde, trichloroethylene and perchloroethlene in air. The photolysis was carried out with a high pressure mercury lamp. The degradation rate of these VOCs was more than 80 percent in five minuts except formaldehyde. The effects of catalyst amount, different types of TiO2 catalyst and density of UV on the degradation rate of the VOCs were also studied.


Assuntos
Poluição do Ar/prevenção & controle , Benzeno/química , Titânio , Catálise , Heptanos/química , Oxirredução , Raios Ultravioleta , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA