Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 373: 128751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805829

RESUMO

To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.


Assuntos
2-Propanol , Butanóis , Fermentação , Compostos Férricos , Acetona , Butiratos , 1-Butanol , Clostridium/genética , Etanol
2.
Biotechnol Biofuels ; 11: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467820

RESUMO

BACKGROUND: Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. RESULTS: Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. CONCLUSIONS: The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA