Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(6): 5123-5148, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498906

RESUMO

The Hedgehog (Hh) signaling pathway has been implicated in the pathogenesis of various cancers. However, the roles of the downstream GLI family (GLI1, GLI2, and GLI3) in tumorigenesis remain elusive. This study aimed to unravel the genetic alterations of GLI1/2/3 in cancer and their association with the immune microenvironment and related signaling pathways. Firstly, we evaluated the expression profiles of GLI1/2/3 in different cancer types, analyzed their prognostic and predictive values, and assessed their correlation with tumor-infiltrating immune cells. Secondly, we explored the relationships between GLI1/2/3 and genetic mutations, epigenetic modifications, and clinically relevant drugs. Finally, we performed enrichment analysis to decipher the underlying mechanisms of GLI1/2/3 in cancer initiation and progression. Our results revealed that the expression levels of GLI1/2/3 were positively correlated in most cancer tissues, suggesting a cooperative role of these factors in tumorigenesis. We also identified tissue-specific expression patterns of GLI1/2/3, which may reflect the distinct functions of these factors in different cell types. Furthermore, GLI1/2/3 expression displayed significant associations with poor prognosis in several cancers, indicating their potential as prognostic biomarkers and therapeutic targets. Importantly, we found that GLI1/2/3 modulated the immune microenvironment by regulating the recruitment, activation, and polarization of cancer-associated fibroblasts, endothelial cells, and macrophages. Additionally, functional enrichment analyses indicated that GLI1/2/3 are involved in the regulation of epithelial-mesenchymal transition (EMT). Together, our findings shed new light on the roles of GLI1/2/3 in tumorigenesis and provide a potential basis for the development of novel therapeutic strategies targeting GLI-mediated signaling pathways in cancer.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Células Endoteliais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias/genética , Prognóstico , Carcinogênese , Análise de Célula Única , Microambiente Tumoral/genética
2.
Aging (Albany NY) ; 16(1): 129-152, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175686

RESUMO

Lymphotoxin beta receptor (LTBR) is a positive T cell proliferation regulator gene. It is closely associated with the tumor immune microenvironment. However, its role in cancer and immunotherapy is unclear. Firstly, the expression level and prognostic value of LTBR were analyzed. Secondly, the expression of LTBR in clinical stages, immune subtypes, and molecular subtypes was analyzed. The correlation between LTBR and immune regulatory genes, immune checkpoint genes, and RNA modification genes was then analyzed. Correlations between LTBR and immune cells, scores, cancer-related functional status, tumor stemness index, mismatch repair (MMR) genes, and DNA methyltransferase were also analyzed. In addition, we analyzed the role of LTBR in DNA methylation, mutational status, tumor mutation burden (TMB), and microsatellite instability (MSI). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the role of LTBR in pan-cancer. Finally, the drugs associated with LTBR were analyzed. The expression of LTBR was confirmed using quantitative real-time PCR and Western blot. LTBR is significantly overexpressed in most cancers and is associated with low patient survival. In addition, LTBR expression was strongly correlated with immune cells, score, cancer-related functional status, tumor stemness index, MMR genes, DNA methyltransferase, DNA methylation, mutational status, TMB, and MSI. Enrichment analysis revealed that LTBR was associated with apoptosis, necroptosis, and immune-related pathways. Finally, multiple drugs targeting LTBR were identified. LTBR is overexpressed in several tumors and is associated with a poor prognosis. It is related to immune-related genes and immune cell infiltration.


Assuntos
Receptor beta de Linfotoxina , Neoplasias , Humanos , Prognóstico , Metilases de Modificação do DNA , Instabilidade de Microssatélites , Neoplasias/genética , DNA , Microambiente Tumoral/genética
3.
Front Genet ; 14: 1204421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287535

RESUMO

[This corrects the article DOI: 10.3389/fgene.2023.1045061.].

4.
Front Genet ; 14: 1045061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035741

RESUMO

Purpose: Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) is implicated in several cancers' development. However, P4HA3 has not been reported in other cancers, and the exact mechanism of action is currently unknown. Materials and methods: First, the expression profile of P4HA3 was analyzed using a combination of the University of California Santa Cruz (UCSC) database, Cancer Cell Line Encyclopedia (CCLE) database, and Genotype-Tissue Expression (GTEx) database. UniCox and Kaplan-Meier were used to analyze the predictive value of P4HA3. The expression of P4HA3 was analyzed in clinical staging, immune subtypes, and Molecular subtypes. Secondly, the correlation of P4HA3 with immunomodulatory genes, immune checkpoint genes, RNA modification genes, immune cell infiltration, cancer-related functional status, tumor stemness index, DNA mismatch repair (MMR) genes and DNA Methyltransferase was examined. The role of P4HA3 in DNA methylation, copy number variation (CNV), mutational status, tumor mutational burden (TMB), and microsatellite instability (MSI) was also analyzed. In addition, gene set enrichment analysis (GSEA) was used to explore the potential functional mechanisms of P4HA3 in pan-cancer. Finally, P4HA3-related drugs were searched in CellMiner, Genomics of Drug Sensitivity in Cancer (GDSC), and Cancer Therapeutics Response Portal (CTRP) databases. Results: P4HA3 is significantly overexpressed in most cancers and is associated with poor prognosis. P4HA3 is strongly associated with clinical cancer stage, immune subtypes, molecular subtypes, immune regulatory genes, immune checkpoint genes, RNA modifier genes, immune cell infiltration, cancer-related functional status, tumor stemness index, MMR Gene, DNA Methyltransferase, DNA methylation, CNV, mutational status, TMB, and MSI are closely related. Available enrichment analysis revealed that P4HA3 is associated with the epithelial-mesenchymal transition and immune-related pathways. There are currently 20 drugs associated with P4HA3. Conclusion: In human pan-cancer, P4HA3 is associated with poor patient prognosis and multiple immune cells and may be a novel immunotherapeutic target. It may act on tumor progression through the epithelial-mesenchymal transition (EMT) pathway.

5.
Front Immunol ; 13: 876616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799780

RESUMO

Purpose: To identify biomarkers associated with CD8+ T cells in coronary artery disease (CAD) and initially explore their potential role in the tumor immune microenvironment. Materials and Methods: CAD-related datasets GSE12288, GSE34198, and GSE66360, were downloaded from the GEO database. First, GSVA was performed based on the GSE12288 dataset. Then WGCNA analysis was performed to identify the most relevant module and candidate hub gene for CD8+ T cells, followed by GO and KEGG analysis of this module. Secondly, the relationship between candidate hub genes and CD8+ T cells was verified using GSE34198 and GSE66360, which led to the identification of hub genes. The relationship of hub genes with CD8+ T cells in cancer was analyzed using the TIMER database. Methylation analysis of hub genes was performed using the DiseaseMeth database. CAD, pan-cancer, pan-cell lines, and pan-normal tissues, correlations between hub genes. In addition, potential drugs and TFs associated with hub genes were predicted, and the ceRNA network was constructed. Finally, GSEA was performed separately for hub genes. Results: CAD was shown to be associated with immune response by GSVA analysis. WGCNA identified the blue module as most related to CD8+ T cells and identified nine candidate hub genes. The relevance of CAD to immunity was further confirmed by GO and KEGG analysis of the module. Two additional datasets validated and identified three hub genes (FBXO7, RAD23A, and MKRN1) that significantly correlated with CD8+ T cells. In addition, we found that hub genes were positively associated with CD8+ T cells in TGCT, THCA, and KICH cancers by our analysis. Moreover, the hub gene was differentially methylated. We also analyzed the correlation between hub genes in CAD, different cancers, different cell lines, and different normal tissues. The results of all the analyses showed a positive correlation between them. Finally, we successfully constructed hub gene-associated TF-gene and ceRNA networks and predicted 11 drugs associated with hub genes. GSEA suggests that hub genes are related to multiple immune response processes. Conclusion: FBXO7, RAD23A, and MKRN1 are significantly associated with CD8+ T cells in CAD and multiple cancers and may act through immune responses in CAD and cancer.


Assuntos
Doença da Artéria Coronariana , Neoplasias , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , Linfócitos T/metabolismo , Microambiente Tumoral/genética
6.
PeerJ ; 10: e13138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313524

RESUMO

Background: Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we know poorly about the molecular mechanisms and effective therapeutic approaches of VC. Methods: The VC dataset, GSE146638, was downloaded from the Gene Expression Omnibus (GEO) database. Using the edgeR package to screen Differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to find pathways affecting VC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the DEGs. Meanwhile, using the String database and Cytoscape software to construct protein-protein interaction (PPI) networks and identify hub genes with the highest module scores. Correlation analysis was performed for hub genes. Receiver operating characteristic (ROC) curves, expression level analysis, GSEA, and subcellular localization were performed for each hub gene. Expression of hub genes in normal and calcified vascular tissues was verified by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC) experiments. The hub gene-related miRNA-mRNA and TF-mRNA networks were constructed and functionally enriched for analysis. Finally, the DGIdb database was utilized to search for alternative drugs targeting VC hub genes. Results: By comparing the genes with normal vessels, there were 64 DEGs in mildly calcified vessels and 650 DEGs in severely calcified vessels. Spp1, Sost, Col1a1, Fn1, and Ibsp were central in the progression of the entire VC by the MCODE plug-in. These hub genes are primarily enriched in ossification, extracellular matrix, and ECM-receptor interactions. Expression level results showed that Spp1, Sost, Ibsp, and Fn1 were significantly highly expressed in VC, and Col1a1 was incredibly low. RT-qPCR and IHC validation results were consistent with bioinformatic analysis. We found multiple pathways of hub genes acting in VC and identified 16 targeting drugs. Conclusions: This study perfected the molecular regulatory mechanism of VC. Our results indicated that Spp1, Sost, Col1a1, Fn1, and Ibsp could be potential novel biomarkers for VC and promising therapeutic targets.


Assuntos
Perfilação da Expressão Gênica , Calcificação Vascular , Humanos , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional/métodos , Calcificação Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA