Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123958, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621452

RESUMO

Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.


Assuntos
Cádmio , Disfunção Cognitiva , Ferroptose , Hipocampo , Neurônios , Coativadores de Receptor Nuclear , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Cádmio/toxicidade , Neurônios/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Autofagia/efeitos dos fármacos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular , Camundongos Endogâmicos C57BL
2.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675600

RESUMO

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Assuntos
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/síntese química , Alanina/química , Alanina/farmacologia , Phytophthora/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Floema/metabolismo , Floema/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Desenho de Fármacos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química
3.
Sci Adv ; 10(5): eadj7500, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306437

RESUMO

The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.


Assuntos
Quimiocinas CC , Receptores CCR8 , Humanos , Microscopia Crioeletrônica , Ligantes , Receptores CCR8/química , Receptores CCR8/metabolismo , Receptores de Quimiocinas/metabolismo
4.
J Med Chem ; 67(4): 2690-2711, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345933

RESUMO

Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.


Assuntos
Peptídeos , Receptor Tipo 4 de Melanocortina , Humanos , Peptídeos/farmacologia , Ligantes , Desenho de Fármacos , Receptor Tipo 3 de Melanocortina , Receptores de Melanocortina
5.
Cell Discov ; 10(1): 3, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182578

RESUMO

The ten Frizzled receptors (FZDs) are essential in Wnt signaling and play important roles in embryonic development and tumorigenesis. Among these, FZD6 is closely associated with lens development. Understanding FZD activation mechanism is key to unlock these emerging targets. Here we present the cryo-EM structures of FZD6 and FZD3 which are known to relay non-canonical planar cell polarity (PCP) signaling pathways as well as FZD1 in their G protein-coupled states and in the apo inactive states, respectively. Comparison of the three inactive/active pairs unveiled a shared activation framework among all ten FZDs. Mutagenesis along with imaging and functional analysis on the human lens epithelial tissues suggested potential crosstalk between the G-protein coupling of FZD6 and the PCP signaling pathways. Together, this study provides an integrated understanding of FZD structure and function, and lays the foundation for developing therapeutic modulators to activate or inhibit FZD signaling for a range of disorders including cancers and cataracts.

6.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808841

RESUMO

Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the two primary risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. We have adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts. We have found that transcription-coupled repair plays a major role in the damage removal process and the released excision products have a distinctive length distribution pattern. We further analyzed the impact of 3D genome organization on the repair of AFB1-induced DNA adducts. We have revealed that chromosomes close to the nuclear center and A compartments undergo expedited repair processes. Notably, we observed an accelerated repair around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced liver cancer.

7.
Cell Rep ; 42(10): 113246, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831605

RESUMO

Metastasis is the leading cause of high ovarian-cancer-related mortality worldwide. Three major processes constitute the whole metastatic cascade: invasion, intravasation, and extravasation. Tumor cells often reprogram their metabolism to gain advantages in proliferation and survival. However, whether and how those metabolic alterations contribute to the invasiveness of tumor cells has yet to be fully understood. Here we performed a genome-wide CRISPR-Cas9 screening to identify genes participating in tumor cell dissemination and revealed that PTGES3 acts as an invasion suppressor in ovarian cancer. Mechanistically, PTGES3 binds to phosphofructokinase, liver type (PFKL) and generates a local source of prostaglandin E2 (PGE2) to allosterically inhibit the enzymatic activity of PFKL. Repressed PFKL leads to downgraded glycolysis and the subsequent TCA cycle for glucose metabolism. However, ovarian cancer suppresses the expression of PTGES3 and disrupts the PTGES3-PGE2-PFKL inhibitory axis, leading to hyperactivation of glucose oxidation, eventually facilitating ovarian cancer cell motility and invasiveness.


Assuntos
Dinoprostona , Neoplasias Ovarianas , Humanos , Feminino , Fosfofrutoquinases , Fosfofrutoquinase-1/genética , Fígado/metabolismo , Glucose/metabolismo , Neoplasias Ovarianas/patologia , Proliferação de Células , Linhagem Celular Tumoral , Invasividade Neoplásica
8.
J Med Chem ; 66(17): 11855-11868, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669317

RESUMO

Despite the essential roles of Frizzled receptors (FZDs) in mediating Wnt signaling in embryonic development and tissue homeostasis, ligands targeting FZDs are rare. A few antibodies and peptide modulators have been developed that mainly bind to the family-conserved extracellular cysteine-rich domain of FZDs, while the canonical binding sites in the transmembrane domain (TMD) are far from sufficiently addressed. Based on the recent structures of FZDs, we explored small-molecule ligand discovery by targeting TMD. From the ChemDiv library with ∼1.6 million compounds, we identified compound F7H as an antagonist of FZD7 with an IC50 at 1.25 ± 0.38 µM. Focusing on this hit, the structural dissection study, together with computing studies such as molecular docking, molecular dynamics simulation, and free energy perturbation calculations, defined the binding pocket with key residue recognition. Our results revealed the structural basis of ligand recognition and demonstrated the feasibility of structure-guided ligand discovery for FZD7-TMD.


Assuntos
Anticorpos , Receptores Frizzled , Feminino , Gravidez , Humanos , Ligantes , Simulação de Acoplamento Molecular , Sítios de Ligação
9.
Sci Total Environ ; 903: 166478, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625726

RESUMO

Cadmium (Cd), a toxic heavy metal, exerts deleterious effects on neuronal survival and cognitive function. NOD-like receptor 3 (NLRP3) inflammasome-dependent pyroptosis has been linked to Cd-induced cytotoxicity. The current research intended to elucidate the role of NLRP3 inflammasome-mediated pyroptosis in Cd-evoked neuronal death and cognitive impairments and the underlying mechanisms. Exposure to 1 mg/kg Cd for 8 weeks led to hippocampal-dependent cognitive deficits and neural/synaptic damage in mice. NLRP3 inflammasome-related protein expression (NLRP3, ASC, and caspase1 p20) and neuronal pyroptosis were significantly upregulated in Cd-treated hippocampi and SH-SY5Y cells. Moreover, pretreatment with the NLRP3 inhibitor MCC950 mitigated Cd-elicited NLRP3 inflammasome activation and subsequent neuronal pyroptosis in SH-SY5Y cells. Furthermore, exposure to Cd downregulated Sirt3 expression, suppressed SOD2 activity by hyperacetylation, and enhanced mtROS accumulation in vivo and in vitro. Notably, Cd-induced NLRP3 inflammasome-dependent neuronal pyroptosis was attenuated by a mtROS scavenger or Sirt3 overexpression in SH-SY5Y cells. In addition, Cd failed to further suppress SOD activity and activate NLRP3 inflammasome-dependent neuronal pyroptosis in Sirt3 shRNA-treated SH-SY5Y cells. Collectively, our findings indicate that Cd exposure induces neuronal injury and cognitive deficits by activating NLRP3 inflammasome-dependent neuronal pyroptosis and that activation of the NLRP3 inflammasome is partially mediated by the Sirt3-mtROS axis.

10.
Cell Discov ; 9(1): 23, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849514

RESUMO

GPR20 is a class-A orphan G protein-coupled receptor (GPCR) and a potential therapeutic target for gastrointestinal stromal tumors (GIST) owing to its differentially high expression. An antibody-drug conjugate (ADC) containing a GPR20-binding antibody (Ab046) was recently developed in clinical trials for GIST treatment. GPR20 constitutively activates Gi proteins in the absence of any known ligand, but it remains obscure how this high basal activity is achieved. Here we report three cryo-EM structures of human GPR20 complexes including Gi-coupled GPR20 in the absence or presence of the Fab fragment of Ab046 and Gi-free GPR20. Remarkably, the structures demonstrate a uniquely folded N-terminal helix capping onto the transmembrane domain and our mutagenesis study suggests a key role of this cap region in stimulating the basal activity of GPR20. We also uncover the molecular interactions between GPR20 and Ab046, which may enable the design of tool antibodies with enhanced affinity or new functionality for GPR20. Furthermore, we report the orthosteric pocket occupied by an unassigned density which might be essential for exploring opportunities for deorphanization.

11.
J Med Chem ; 64(22): 16573-16597, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34783558

RESUMO

Adenosine is an immunosuppressive factor in the tumor microenvironment mainly through activation of the A2A adenosine receptor (A2AR), which is a mechanism hijacked by tumors to escape immune surveillance. Small-molecule A2AR antagonists are being evaluated in clinical trials as immunotherapeutic agents, but their efficacy is limited as standalone therapies. To enhance the antitumor effects of A2AR antagonists, dual-acting compounds incorporating A2AR antagonism and histone deacetylase (HDAC) inhibitory actions were designed and synthesized, based on co-crystal structures of A2AR. Compound 24e (IHCH-3064) exhibited potent binding to A2AR (Ki = 2.2 nM) and selective inhibition of HDAC1 (IC50 = 80.2 nM), with good antiproliferative activity against tumor cell lines in vitro. Intraperitoneal administration of 24e (60 mg/kg, bid) inhibited mouse MC38 tumor growth with a tumor growth inhibition rate of 95.3%. These results showed that dual-acting compounds targeting A2AR and HDAC are potentially immunotherapeutic agents that are worth further exploring.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Imunossupressores/farmacologia , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/química , Animais , Antineoplásicos/química , Inibidores de Histona Desacetilases/química , Humanos , Terapia de Imunossupressão , Imunossupressores/química , Camundongos , Estudo de Prova de Conceito , Relação Estrutura-Atividade
12.
EBioMedicine ; 66: 103290, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33752128

RESUMO

BACKGROUND: Significantly elevated serum and hepatic bile acid (BA) concentrations have been known to occur in patients with liver fibrosis. However, the roles of different BA species in liver fibrogenesis are not fully understood. METHODS: We quantitatively measured blood BA concentrations in nonalcoholic steatohepatitis (NASH) patients with liver fibrosis and healthy controls. We characterized BA composition in three mouse models induced by carbon tetrachloride (CCl4), streptozotocin-high fat diet (STZ-HFD), and long term HFD, respectively. The molecular mechanisms underlying the fibrosis-promoting effects of BAs were investigated in cell line models, a 3D co-culture system, and a Tgr5 (HSC-specific) KO mouse model. FINDINGS: We found that a group of conjugated 12α-hydroxylated (12α-OH) BAs, such as taurodeoxycholate (TDCA) and glycodeoxycholate (GDCA), significantly increased in NASH patients and liver fibrosis mouse models. 12α-OH BAs significantly increased HSC proliferation and protein expression of fibrosis-related markers. Administration of TDCA and GDCA directly activated HSCs and promoted liver fibrogenesis in mouse models. Blockade of BA binding to TGR5 or inhibition of ERK1/2 and p38 MAPK signaling both significantly attenuated the BA-induced fibrogenesis. Liver fibrosis was attenuated in mice with Tgr5 depletion. INTERPRETATION: Increased hepatic concentrations of conjugated 12α-OH BAs significantly contributed to liver fibrosis via TGR5 mediated p38MAPK and ERK1/2 signaling. Strategies to antagonize TGR5 or inhibit ERK1/2 and p38 MAPK signaling may effectively prevent or reverse liver fibrosis. FUNDINGS: This study was supported by the National Institutes of Health/National Cancer Institute Grant 1U01CA188387-01A1, the National Key Research and Development Program of China (2017YFC0906800); the State Key Program of National Natural Science Foundation (81430062); the National Natural Science Foundation of China (81974073, 81774196), China Postdoctoral Science Foundation funded project, China (2016T90381), and E-institutes of Shanghai Municipal Education Commission, China (E03008).


Assuntos
Ácidos e Sais Biliares/metabolismo , Suscetibilidade a Doenças , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Biomarcadores , Tetracloreto de Carbono/efeitos adversos , Estudos de Casos e Controles , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Humanos , Hidroxilação , Cirrose Hepática/patologia , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Estreptozocina/efeitos adversos
13.
Science ; 368(6489): 428-433, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327598

RESUMO

The melanocortin-4 receptor (MC4R) is involved in energy homeostasis and is an important drug target for syndromic obesity. We report the structure of the antagonist SHU9119-bound human MC4R at 2.8-angstrom resolution. Ca2+ is identified as a cofactor that is complexed with residues from both the receptor and peptide ligand. Extracellular Ca2+ increases the affinity and potency of the endogenous agonist α-melanocyte-stimulating hormone at the MC4R by 37- and 600-fold, respectively. The ability of the MC4R crystallized construct to couple to ion channel Kir7.1, while lacking cyclic adenosine monophosphate stimulation, highlights a heterotrimeric GTP-binding protein (G protein)-independent mechanism for this signaling modality. MC4R is revealed as a structurally divergent G protein-coupled receptor (GPCR), with more similarity to lipidic GPCRs than to the homologous peptidic GPCRs.


Assuntos
Cálcio/química , Receptor Tipo 4 de Melanocortina/química , Receptores Acoplados a Proteínas G/química , Cristalografia por Raios X , AMP Cíclico/química , Humanos , Ligantes , Hormônios Estimuladores de Melanócitos/química , Hormônios Estimuladores de Melanócitos/farmacologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
14.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004463

RESUMO

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/química , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Animais , Células CHO , Agonistas de Receptores de Canabinoides/química , Canabinoides/química , Canabinoides/farmacologia , Linhagem Celular Tumoral , Colesterol/química , Colesterol/farmacologia , Cricetinae , Cricetulus , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Simulação de Dinâmica Molecular , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células Sf9 , Spodoptera
15.
Cancer Res ; 80(5): 1143-1155, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932456

RESUMO

Considerable metabolic reprogramming has been observed in a conserved manner across multiple cancer types, but their true causes remain elusive. We present an analysis of around 50 such reprogrammed metabolisms (RM) including the Warburg effect, nucleotide de novo synthesis, and sialic acid biosynthesis in cancer. Analyses of the biochemical reactions conducted by these RMs, coupled with gene expression data of their catalyzing enzymes, in 7,011 tissues of 14 cancer types, revealed that all RMs produce more H+ than their original metabolisms. These data strongly support a model that these RMs are induced or selected to neutralize a persistent intracellular alkaline stress due to chronic inflammation and local iron overload. To sustain these RMs for survival, cells must find metabolic exits for the nonproton products of these RMs in a continuous manner, some of which pose major challenges, such as nucleotides and sialic acids, because they are electrically charged. This analysis strongly suggests that continuous cell division and other cancerous behaviors are ways for the affected cells to remove such products in a timely and sustained manner. As supporting evidence, this model can offer simple and natural explanations to a range of long-standing open questions in cancer research including the cause of the Warburg effect. SIGNIFICANCE: Inhibiting acidifying metabolic reprogramming could be a novel strategy for treating cancer.


Assuntos
Metabolismo Energético , Glicólise , Mitocôndrias/patologia , Neoplasias/patologia , Prótons , Proliferação de Células , Sobrevivência Celular , Citosol/patologia , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Ácido N-Acetilneuramínico/biossíntese , Nucleotídeos/biossíntese , RNA-Seq
16.
Org Biomol Chem ; 17(25): 6136-6142, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31180094

RESUMO

The smoothened receptor (SMO) mediates the hedgehog (Hh) signaling pathway and plays a vital role in embryonic development and tumorigenesis. The visualization of SMO has the potential to provide new insights into its enigmatic mechanisms and associated disease pathogenesis. Based on recent progress in structural studies of SMO, we have designed and characterized a group of affinity probes to facilitate the turn-on fluorescence labeling of SMO at the ε-amine of K395. These chemical probes were derived from a potent SMO antagonist skeleton by the conjugation of a small non-fluorescent unit, O-nitrobenzoxadiazole (O-NBD). In this context, optimal probes were developed to be capable of efficiently and selectively lighting up SMO regardless of whether it is in micelles or in native membranes. More importantly, the resulting labeled SMO only bears a very small fluorophore and allows for the recovery of the unoccupied pocket by dissociation of the residual ligand module. These advantages should allow the probe to serve as a potential tool for monitoring SMO trafficking, understanding Hh activation mechanisms, and even the diagnosis of tumorigenesis in the future.

17.
Nature ; 560(7720): 666-670, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135577

RESUMO

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Assuntos
Receptores Frizzled/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Via de Sinalização Wnt
18.
Sci Rep ; 8(1): 8084, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795391

RESUMO

Many hemorheologic Traditional Chinese Medicines (TCMs) that are widely-used clinically lack molecular mechanisms of action. We hypothesized that some of the active components of hemorheologic TCMs may function through targeting prothrombotic P2Y1 and/or P2Y12 receptors. The interactions between 253 antithrombotic compounds from TCM and these two G protein-coupled P2Y receptors were evaluated using virtual screening. Eleven highly ranked hits were further tested in radioligand binding and functional assays. Among these compounds, salvianolic acid A and C antagonized the activity of both P2Y1 and P2Y12 receptors in the low µM range, while salvianolic acid B antagonized the P2Y12 receptor. These three salvianolic acids are the major active components of the broadly-used hemorheologic TCM Danshen (Salvia militorrhiza), the antithrombotic molecular mechanisms of which were largely unknown. Thus, the combination of virtual screening and experimental validation identified potential mechanisms of action of multicomponent drugs that are already employed clinically.


Assuntos
Alcenos/isolamento & purificação , Alcenos/farmacologia , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacologia , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Antagonistas do Receptor Purinérgico P2Y , Salvia miltiorrhiza/química , Alcenos/química , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/farmacologia , Medicamentos de Ervas Chinesas/química , Fibrinolíticos/química , Humanos , Lactatos/química , Lactatos/isolamento & purificação , Lactatos/farmacologia , Medicina Tradicional Chinesa , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Polifenóis/química , Antagonistas do Receptor Purinérgico P2Y/química , Antagonistas do Receptor Purinérgico P2Y/isolamento & purificação , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Receptores Purinérgicos P2Y12/metabolismo , Células Tumorais Cultivadas
19.
Cell ; 172(4): 719-730.e14, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398112

RESUMO

Drugs frequently require interactions with multiple targets-via a process known as polypharmacology-to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The competing challenges of developing selective 5-HT2C receptor ligands or creating drugs with a defined polypharmacological profile, especially aimed at G protein-coupled receptors (GPCRs), remain extremely difficult. Here, we solved two structures of the 5-HT2C receptor in complex with the highly promiscuous agonist ergotamine and the 5-HT2A-C receptor-selective inverse agonist ritanserin at resolutions of 3.0 Å and 2.7 Å, respectively. We analyzed their respective binding poses to provide mechanistic insights into their receptor recognition and opposing pharmacological actions. This study investigates the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs.


Assuntos
Ergotamina/química , Receptor 5-HT2C de Serotonina/química , Ritanserina/química , Agonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Células HEK293 , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Domínios Proteicos , Receptor 5-HT2C de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Relação Estrutura-Atividade , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo
20.
Nat Commun ; 8: 15383, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513578

RESUMO

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.


Assuntos
Proteínas Hedgehog/metabolismo , Domínios Proteicos , Transdução de Sinais , Receptor Smoothened/química , Sítios de Ligação , Cristalografia por Raios X , Medição da Troca de Deutério/métodos , Células HEK293 , Humanos , Ligantes , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Receptor Smoothened/isolamento & purificação , Receptor Smoothened/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA