Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 42(8): 1682-1695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38460961

RESUMO

Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1ß and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1ß and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Suínos , Fumaça/efeitos adversos , Interleucina-1beta/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Nicotiana/efeitos adversos , Progressão da Doença
2.
J Biomech Eng ; 145(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752723

RESUMO

The cartilage endplates (CEPs) on the superior and inferior surfaces of the intervertebral disk (IVD), are the primary nutrient transport pathways between the disk and the vertebral body. Passive diffusion is responsible for transporting small nutrient and metabolite molecules through the avascular CEPs. The baseline solute diffusivities in healthy CEPs have been previously studied, however alterations in CEP diffusion associated with IVD degeneration remain unclear. This study aimed to quantitatively compare the solute diffusion in healthy and degenerated human CEPs using a fluorescence recovery after photobleaching (FRAP) approach. Seven healthy CEPs and 22 degenerated CEPs were collected from five fresh-frozen human cadaveric spines and 17 patients undergoing spine fusion surgery, respectively. The sodium fluorescein diffusivities in CEP radial and vertical directions were measured using the FRAP method. The CEP calcification level was evaluated by measuring the average X-ray attenuation. No difference was found in solute diffusivities between radial and axial directions in healthy and degenerated CEPs. Compared to healthy CEPs, the average solute diffusivity was 44% lower in degenerated CEPs (Healthy: 29.07 µm2/s (CI: 23.96-33.62 µm2/s); degenerated: 16.32 µm2/s (CI: 13.84-18.84 µm2/s), p < 0.001). The average solute diffusivity had an inverse relationship with the degree of CEP calcification as determined by the normalized X-ray attenuation values (ß = -22.19, R2 = 0.633; p < 0.001). This study suggests that solute diffusion through the disk and vertebral body interface is significantly hindered by CEP calcification, providing clues to help further understand the mechanism of IVD degeneration.


Assuntos
Calcinose , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Cartilagem/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Transporte Biológico , Difusão
3.
Stem Cells ; 39(11): 1457-1477, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224636

RESUMO

Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.


Assuntos
Osteogênese Imperfeita , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Transgênicos , Osteoblastos , Osteogênese , Osteogênese Imperfeita/terapia
4.
J Bone Joint Surg Am ; 102(19): 1694-1702, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33027123

RESUMO

BACKGROUND: We sought to define "at risk" loading conditions associated with rotating-platform total knee arthroplasty (TKA-RP) implants that predispose to insert subluxation and spinout and to quantify tolerances for flexion-extension gap asymmetry and laxity in order to prevent these adverse events. METHODS: Biomechanical testing was performed on 6 fresh-frozen cadaveric limbs with a TKA-RP implant with use of a gap-balancing technique, followed by sequential femoral component revision with variable-thickness polyethylene inserts to systematically represent 5 flexion-extension mismatch and asymmetry conditions. Each configuration was subjected to mechanical loading at 0°, 30°, and 60°. Rotational displacement of the insert on the tibial baseplate, lateral compartment separation, and insert concavity depth were measured with use of a digital caliper. Yield torque, a surrogate for ease of insert rotation and escape of the femoral component, was calculated with use of custom MATLAB code. RESULTS: Design-intended insert rotation decreased with increasing knee flexion angles in each loading configuration. Likewise, yield torque increased with increasing joint flexion and decreased with increasing joint laxity in all testing configurations. Insert instability and femoral condyle displacement were reproduced in positions of increasing knee flexion and asymmetrical flexion gap laxity. The depth of lateral polyethylene insert concavity determined femoral condylar capture and defined a narrow tolerance of <2 mm in the smallest implant sizes for flexion gap asymmetry leading to rotational insert instability. CONCLUSIONS: Decreased femoral-tibial articular surface conformity with increasing knee flexion and asymmetrical flexion gap laxity enable paradoxical motion of the femoral component on the upper insert surface rather than the undersurface, as designed. CLINICAL RELEVANCE: Mobile-bearing TKA-RP is a technically demanding procedure requiring a snug symmetrical flexion gap. As little as 2 mm of asymmetrical lateral flexion laxity can result in decreased conformity, condyle liftoff, and insert subluxation. Flexion beyond 30° decreases bearing surface contact area and predisposes to reduced insert rotation and mechanical malfunction.


Assuntos
Artroplastia do Joelho/métodos , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Cadáver , Fêmur/cirurgia , Humanos , Prótese do Joelho , Masculino , Pessoa de Meia-Idade , Polietileno , Desenho de Prótese , Reoperação , Rotação , Tíbia/cirurgia , Torque
5.
Spine Deform ; 7(2): 213-219, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660214

RESUMO

STUDY DESIGN: Large animal study. OBJECTIVE: Create a thoracic hyperkyphotic deformity in an immature porcine spine, so that future researchers may use this model to validate spinal instrumentation and other therapies used in the treatment of hyperkyphosis. SUMMARY OF BACKGROUND DATA: Although several scoliotic animal models have been developed, there have been no reports of a thoracic hyperkyphotic animal model creation in an immature animal. The present study was designed to produce a porcine hyperkyphotic model by the time the pig weighed 25 kg, which corresponds to the approximate weight of a child undergoing surgery for early-onset scoliosis (EOS). METHODS: Successful surgical procedures were performed in 6 consecutive 10-kg (male, 5-week-old) immature Yorkshire pigs. Procedure protocol consisted of 1) a left thoracotomy at T10-T11, 2) screw placement at T9 and T11, 3) partial vertebrectomy at T10, 4) posterior interspinous ligament transection, and 5) placement of wire loop around screws and tightening. Weekly x-ray imaging was performed preoperatively and postoperatively, documenting progressively increasing kyphosis as the pig grew. Necropsy was performed 5-6 weeks after surgery, with CT, slab section, and histologic analysis. RESULTS: Average T9-T11 kyphosis (measured by sagittal Cobb angle) was 6.1° ± 1.4° (mean ± SD) preoperatively, 30.5° ± 1.0° immediately postoperation, and significantly increased to 50.3° ± 7.2° (p < .0001) over 5-6 weeks in 6 consecutive pigs at time of necropsy. CONCLUSIONS: An animal model of relatively more rigid-appearing thoracic hyperkyphotic deformities in immature pigs has been created. Subsequent studies addressing management of early-onset kyphosis with spinal instrumentation are now possible. LEVEL OF EVIDENCE: Level V.


Assuntos
Modelos Animais de Doenças , Cifose , Suínos , Animais , Masculino , Vértebras Torácicas
6.
JAMA Otolaryngol Head Neck Surg ; 144(9): 769-775, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054621

RESUMO

Importance: The chimeric anterolateral thigh osteomyocutaneous (ALTO) free flap is a recently described microvascular option for head and neck osseous defects associated with complex soft-tissue requirements. To date, the association of ALTO flap harvest with femur structural integrity and the need for routine prophylactic fixation following harvest has been incompletely described. Objective: To investigate the association of ALTO flap harvest, with and without prophylactic fixation, on femur structural integrity as measured by 4-point bend and torsional biomechanical testing. Design and Setting: At a research laboratory, 24 synthetic fourth-generation composite femurs with validated biomechanical properties underwent 10-cm-long, 30% circumferential osteotomies at the proximal middle third of the femur; 6 femurs served as controls. Osteotomized femurs with and without fixation underwent torsional and 4-point bend biomechanical testing. Femur fixation consisted of intramedullary nail and distal interlock screw placement. Main Outcomes and Measures: Force and torque to fracture (expressed in kilonewtons [kN] and Newton meters [N∙m], respectively) were compared between controls, osteotomized femurs without fixation, and osteotomized femurs with fixation. Additional outcome measures included femur stiffness and fracture patterns. Results: On posterior to anterior (PA) 4-point bend testing, force to fracture of osteotomized femurs was 22% of controls (mean difference, 8.3 kN; 95% CI, 6.6-10.0 kN). On torsional testing the torque to fracture of osteotomized femurs was 12% of controls (mean difference, 351.1 N∙m; 95% CI, 307.1-395.1 N∙m). Following fixation there was a 67% improvement in PA force to fracture and a 37% improvement in torque to fracture. However, osteotomized femurs with fixation continued to have a reduced PA force to fracture at 37% of controls (mean difference, 6.8 kN; 95% CI, 4.5-9.2 kN) and torque to fracture at 16% of controls (mean difference, 333.7 N∙m; 95% CI, 306.8-360.6 N∙m). On torsional testing, all osteotomized femurs developed similar spiral fractures through a corner of the distal osteotomy site. This fracture pattern changed after prophylactic fixation with femurs developing nondisplaced fractures through the proximal osteotomy site. There were no underlying hardware failures during testing of osteotomized femurs with fixation. Conclusions and Relevance: Anterolateral thigh osteomyocutaneous flap harvest results in significant changes in the structural integrity of the femur. Postoperative stabilization should be strongly considered, with future research directed at investigating the clinical significance of residual biomechanical changes following femur fixation.


Assuntos
Transplante Ósseo/métodos , Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Retalhos de Tecido Biológico/transplante , Retalho Miocutâneo/transplante , Osteotomia , Procedimentos de Cirurgia Plástica/métodos , Adulto , Idoso , Fenômenos Biomecânicos , Pinos Ortopédicos , Parafusos Ósseos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/prevenção & controle , Fêmur/patologia , Fixação Intramedular de Fraturas/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Osteotomia/efeitos adversos , Osteotomia/métodos , Complicações Pós-Operatórias/prevenção & controle , Coxa da Perna
7.
Clin Orthop Relat Res ; 476(10): 2076-2090, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30024459

RESUMO

BACKGROUND: External beam irradiation is an accepted treatment for skeletal malignancies. Radiation acts on both cancerous and normal cells and, depending on the balance of these effects, may promote or impair bone healing after pathologic fracture. Previous studies suggest an adverse effect of radiation on endochondral ossification, but the existence of differential effects of radiation on the two distinct bone healing pathways is unknown. QUESTIONS/PURPOSES: The purpose of this study was to investigate the differential effects of external beam irradiation on endochondral compared with intramembranous ossification with intramedullary nail and plate fixation of fractures inducing the two respective osseous healing pathways through assessment of (1) bone biology by histomorphometric analysis of cartilage area and micro-CT volumetric assessment of the calcified callus; and (2) mechanical properties of the healing fracture by four-point bending failure analysis of bending stiffness and strength. METHODS: Thirty-six male Sprague-Dawley rats underwent bilateral iatrogenic femur fracture: one side was repaired with an intramedullary nail and the other with compression plating. Three days postoperatively, half (n = 18) received 8-Gray external beam irradiation to each fracture. Rodents were euthanized at 1, 2, and 4 weeks postoperatively (n = 3/group) for quantitative histomorphometry of cartilage area and micro-CT assessment of callus volume. The remaining rodents were euthanized at 3 months (n = 9/group) and subjected to four-point bending tests to assess stiffness and maximum strength. RESULTS: Nailed femurs that were irradiated exhibited a reduction in cartilage area at both 2 weeks (1.08 ± 1.13 mm versus 37.32 ± 19.88 mm; 95% confidence interval [CI] of the difference, 4.32-68.16 mm; p = 0.034) and 4 weeks (4.60 ± 3.97 mm versus 39.10 ± 16.28 mm; 95% CI of the difference, 7.64-61.36 mm; p = 0.023) compared with nonirradiated fractures. There was also a decrease in the volume ratio of calcified callus at 4 weeks (0.35 ± 0.08 versus 0.51 ± 0.05; 95% CI of the difference, 0.01-0.31; p = 0.042) compared with nonirradiated fractures. By contrast, there was no difference in cartilage area or calcified callus between irradiated and nonirradiated plated femurs. The stiffness (128.84 ± 76.60 N/mm versus 26.99 ± 26.07 N/mm; 95% CI of the difference, 44.67-159.03 N/mm; p = 0.012) and maximum strength (41.44 ± 22.06 N versus 23.75 ± 11.00 N; 95% CI of the difference, 0.27-35.11 N; p = 0.047) of irradiated plated femurs was greater than the irradiated nailed femurs. However, for nonirradiated femurs, the maximum strength of nailed fractures (36.05 ± 17.34 N versus 15.63 ± 5.19 N; 95% CI of the difference, 3.96-36.88 N; p = 0.022) was greater than plated fractures, and there was no difference in stiffness between the nailed and plated fractures. CONCLUSIONS: In this model, external beam irradiation was found to preferentially inhibit endochondral over intramembranous ossification with the greatest impairment in healing of radiated fractures repaired with intramedullary nails compared with those fixed with plates. Future work with larger sample sizes might focus on further elucidating the observed differences in mechanical properties. CLINICAL RELEVANCE: This work suggests that there may be a rationale for compression plating rather than intramedullary nailing of long bone fractures in select circumstances where bony union is desirable, adjunctive radiation treatment is required, and bone stock is sufficient for plate and screw fixation.


Assuntos
Fraturas do Fêmur/terapia , Fêmur/efeitos da radiação , Fêmur/cirurgia , Consolidação da Fratura/efeitos da radiação , Osteogênese/efeitos da radiação , Doses de Radiação , Animais , Pinos Ortopédicos , Placas Ósseas , Terapia Combinada , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/fisiopatologia , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Fixação Intramedular de Fraturas/instrumentação , Masculino , Ratos Sprague-Dawley , Fatores de Tempo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA