Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Carcinog ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780147

RESUMO

Sulforaphane (SFN) exerts anticancer effect on various cancers including gastric cancer. However, the regulatory effect of SFN on programmed death-ligand 1 (PD-L1) and checkpoint blockade therapy in gastric cancer have not been elucidated. Here we demonstrated that SFN suppressed gastric cancer cell growth both in vitro and in vivo study. SFN upregulated PD-L1 expression through activating ΔNP63α in gastric cancer cells. Further, we found that SFN impaired the anticancer effect of anti-PD-L1 monoclonal antibody (α-PD-L1 mab) on gastric cancer cells. These results uncover a novel PD-L1 regulatory mechanism and the double-edged role of SFN in gastric cancer intervention.

2.
Front Pharmacol ; 15: 1304502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487163

RESUMO

The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.

3.
Recent Pat Anticancer Drug Discov ; 19(2): 188-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38214358

RESUMO

BACKGROUND: Giant cell tumor of bone (GCTB) is a locally aggressive bone tumour aggravated by stromal cell proliferation and metastasis. OBJECTIVE: We investigated the mechanism of action of human chorionic gonadotropin (HCG) in mediating GCTB proliferation and invasion. METHODS: The expression of HCG was quantified using quantitative real-time PCR. After the primary stromal cells were isolated and identified, the function of HCG in GCTB was estimated using the cell counting kit-8, flow cytometry, scratch experiment, transwell assay, Western blot, and immunofluorescence. Moreover, the mechanism of HCG was assessed through western blotting. RESULTS: HCG expression was decreased in clinical tissue samples from patients with GCTB. We validated that HCG repressed stromal cell proliferation, migration, invasion, autophagy, and epithelial- mesenchymal transition (EMT) and promoted cell apoptosis in GCTB. We also verified that HCG repressed the autophagy and EMT of stromal cells through the Smad signaling axis in GCTB. HCG inhibited the transduction of the Smad signaling pathway by restraining the binding of the TGF-ß II receptor to ligand Activin A. CONCLUSION: HCG restrained the Smad signaling pathway by antagonizing TGF-ß signaling in GCTB. HCG may serve as a useful patent to treat GCTB.


Assuntos
Tumor de Células Gigantes do Osso , Fator de Crescimento Transformador beta , Humanos , Tumor de Células Gigantes do Osso/tratamento farmacológico , Tumor de Células Gigantes do Osso/metabolismo , Linhagem Celular Tumoral , Patentes como Assunto , Transdução de Sinais , Gonadotropina Coriônica
5.
Ultrason Imaging ; 46(2): 102-109, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38098206

RESUMO

This study aimed to compare the value of ultrasound elastography combined with contrast-enhanced ultrasound (CEUS) quantitative analysis in the differentiation of nodular fibrocystic breast change (FBC) from breast invasive ductal carcinoma (BIDC). We selected 50 patients each with nodular FBC and BIDC, who were admitted to the Affiliated Hospital of Zunyi Medical University from January 2018 to December 2021. Their ultrasonic elastic images and CEUS videos were collected, their ultrasound elastography scores and the ratio of strain rate (SR) of the lesions were determined, and the exported DICOM format videos of CEUS were quantitatively analyzed using VueBox software to obtain quantitative perfusion parameters. The differences between the ultrasound elastography score and SR while comparing nodular FBC and BIDC cases were statistically significant (p < .05). The sensitivity, specificity, and accuracy of ultrasound elastography scores in the differential diagnoses of nodular FBC and BIDC were 74%, 88%, and 81%, respectively. Additionally, the sensitivity, specificity, and accuracy of SR in the differential diagnosis of nodular FBC and BIDC were 94%, 78%, and 86%, respectively. Statistically significant differences were observed in the CEUS quantitative perfusion parameters PE, AUC (WiAUC, WoAUC, WiWoAUC), and WiPI in both nodular FBC and BIDC according to the VueBox software (p < .05). The sensitivity, specificity, and accuracy of CEUS quantitative analysis in the differential diagnoses of nodular FBC and BIDC were 66%, 82%, and 74%, respectively. Using the pathological findings as the gold standard, ROC curves were established, and the area under the curve (AUC) of the CEUS quantitative analysis, elasticity score, SR, and ultrasound elastography combined with CEUS quantitative analysis were 0.731, 0.838, and 0.892, as well as 0.945, respectively. Ultrasound elasticity scoring, SR and CEUS quantitative analysis have certain application value for differentiating nodular FBC cases from BIDC; however, ultrasound elasticity imaging combined with CEUS quantitative analysis can help in improving the differential diagnostic efficacy of nodular FBC cases from BIDC.


Assuntos
Carcinoma Ductal , Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Meios de Contraste , Ultrassonografia/métodos , Mama/diagnóstico por imagem , Diagnóstico Diferencial , Sensibilidade e Especificidade
6.
J Pak Med Assoc ; 73(10): 2096-2099, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876080

RESUMO

A 52 year old woman presented to the emergency department of Affiliated Hospital of Zunyi Medical University, Zunyi, China in May 2022, complaining of a palpable lower abdominal mass since two days. She denied haematuria, umbilical drainage, or any other urinary symptoms. Previous health record indicated that the patient was diagnosed with urachal inflammatory pseudotumour. Inflammatory pseudotumourous masses of the urachal canal are rare chronic inflammatory disorders with only a few case reports. Ultrasonography is the preferred method for diagnosing urachal lesions. Contrast- enhanced ultrasonography (CEUS) allows real-time visualization of the microvascular blood flow within the solid lesion, reducing the probability of misdiagnosis of the disease. We have reported a case of urachal inflammatory pseudotumour and analyzed its ultrasonographic findings from two-dimensional conventional ultrasonography and CEUS to provide support for the diagnosis of urachal inflammatory pseudotumour in the clinic and to assist clinical selection of effective treatment modalities.


Assuntos
Granuloma de Células Plasmáticas , Úraco , Feminino , Humanos , Pessoa de Meia-Idade , Úraco/diagnóstico por imagem , Úraco/patologia , Granuloma de Células Plasmáticas/diagnóstico por imagem , Resultado do Tratamento , Diagnóstico Diferencial , Ultrassonografia
7.
J Biol Chem ; 299(4): 103052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813236

RESUMO

Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.


Assuntos
Phytoplasma , Phytoplasma/química , Phytoplasma/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia
8.
Plant J ; 112(6): 1473-1488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36380696

RESUMO

'Candidatus Phytoplasma tritici' ('Ca. P. tritici') is an insect-borne obligate pathogen that infects wheat (Triticum aestivum) causing wheat blue dwarf disease, and leads to yield losses. SWP12 is a potential effector secreted by 'Ca. P. tritici' that manipulates host processes to create an environment conducive to phytoplasma colonization, but the detailed mechanism of action remains to be investigated. In this study, the expression of SWP12 weakened the basal immunity of Nicotiana benthamiana and promoted leaf colonization by Phytophthora parasitica, Sclerotinia sclerotiorum, and tobacco mild green mosaic virus. Moreover, the expression of SWP12 in wheat plants promoted phytoplasma colonization. Triticum aestivum WRKY74 and N. benthamiana WRKY17 were identified as host targets of SWP12. The expression of TaWRKY74 triggered reactive oxygen species bursts, upregulated defense-related genes, and decreased TaCRR6 transcription, leading to reductions in NADH dehydrogenase complex (NDH) activity. Expression of TaWRKY74 in wheat increased plant resistance to 'Ca. P. tritici', and silencing of TaWRKY74 enhanced plant susceptibility, which indicates that TaWRKY74 is a positive regulator of wheat resistance to 'Ca. P. tritici'. We showed that SWP12 weakens plant resistance and promotes 'Ca. P. tritici' colonization by destabilizing TaWRKY74.


Assuntos
Phytoplasma , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Doenças das Plantas , Resistência à Doença/genética
9.
BMC Musculoskelet Disord ; 23(1): 1020, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435763

RESUMO

Steroid-induced osteonecrosis of femoral head (SANFH) involves impaired differentiation of bone marrow mesenchymal stem cells (BMSC), the mechanism of which is regulated by multiple microRNAs. Studies have shown that miR-145 is a key regulatory molecule of BMSC cells, but its mechanism in steroid-induced femur head necrosis remains unclear. The present study mainly explored the specific mechanism of miR-145 involved in SANFH. In this study dexamethasone, a typical glucocorticoid, was used to induce osteogenic differentiation of BMSC cells. Western blot, qPCR, CCK8 and flow cytometry were used to investigate the effects of miR-145 on the proliferation and differentiation of BMSC. The relationship between miR-145 and GABA Type A Receptor Associated Protein Like 1(GABARAPL1) was identified using dual luciferase reports and the effects of the two molecules on BMSC were investigated in vitro. The results showed that miR-145 was up-regulated in SANFH patients, while GABARAPL1 was down-regulated. Inhibition of miR-145 can improve apoptosis and promote proliferation and activation of BMSC. GABARAPL1 is a downstream target gene of miR-145 and is negatively regulated by miR-145. In conclusion, miR-145 regulates the proliferation and differentiation of glucocorticoid-induced BMSC cells through GABARAPL1 and pharmacologically inhibit targeting miR-145 may provide new aspect for the treatment of SANFH.


Assuntos
Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Osteogênese , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/metabolismo , Glucocorticoides/efeitos adversos , Medula Óssea , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Esteroides , Proliferação de Células , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
J Integr Plant Biol ; 64(8): 1631-1645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713231

RESUMO

Autophagy is an intracellular degradation mechanism involved in antiviral defense, but the strategies employed by plant viruses to counteract autophagy-related defense remain unknown for the majority of the viruses. Herein, we describe how the Chinese wheat mosaic virus (CWMV, genus Furovirus) interferes with autophagy and enhances its infection in Nicotiana benthamiana. Yeast two-hybrid screening and in vivo/in vitro assays revealed that the 19 kDa coat protein (CP19K) of CWMV interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs), negative regulators of autophagy, which bind autophagy-related protein 3 (ATG3), a key factor in autophagy. CP19K also directly interacts with ATG3, possibly leading to the formation of a CP19K-GAPC-ATG3 complex. CP19K-GAPC interaction appeared to intensify CP19K-ATG3 binding. Moreover, CP19K expression upregulated GAPC gene transcripts and reduced autophagic activities. Accordingly, the silencing of GAPC genes in transgenic N. benthamiana reduced CWMV accumulation, whereas CP19K overexpression enhanced it. Overall, our results suggest that CWMV CP19K interferes with autophagy through the promotion and utilization of the GAPC role as a negative regulator of autophagy.


Assuntos
Vírus de Plantas , Viroses , Autofagia/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Doenças das Plantas , Nicotiana/genética , Nicotiana/metabolismo
11.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459040

RESUMO

With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context.


Assuntos
Aprendizado Profundo , Retinopatia Diabética , Edema Macular , Retinopatia Diabética/diagnóstico por imagem , Humanos , Edema Macular/diagnóstico por imagem , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
12.
Viruses ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34834995

RESUMO

Autophagy is an evolutionarily conserved cellular-degradation mechanism implicated in antiviral defense in plants. Studies have shown that autophagy suppresses virus accumulation in cells; however, it has not been reported to specifically inhibit viral spread in plants. This study demonstrated that infection with citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) activated autophagy in Nicotiana benthamiana plants as indicated by the increase of autophagosome formation. Impairment of autophagy through silencing of N. benthamiana autophagy-related gene 5 (NbATG5) and NbATG7 enhanced cell-to-cell and systemic movement of CLBV; however, it did not affect CLBV accumulation when the systemic infection had been fully established. Treatment using an autophagy inhibitor or silencing of NbATG5 and NbATG7 revealed that transiently expressed movement protein (MP), but not coat protein, of CLBV was targeted by selective autophagy for degradation. Moreover, we identified that CLBV MP directly interacted with NbATG8C1 and NbATG8i, the isoforms of autophagy-related protein 8 (ATG8), which are key factors that usually bind cargo receptors for selective autophagy. Our results present a novel example in which autophagy specifically targets a viral MP to limit the intercellular spread of the virus in plants.


Assuntos
Autofagia/fisiologia , Flexiviridae/fisiologia , Proteínas Virais/metabolismo , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Flexiviridae/efeitos dos fármacos , Flexiviridae/genética , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas , Vírus de Plantas , Proteólise/efeitos dos fármacos , Nicotiana/virologia
13.
Cell Biol Int ; 45(12): 2452-2463, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431160

RESUMO

Macrophages (Mφs) are master regulators of the immune response and may serve as therapeutic targets in aging societies. This study aimed to determine the function of M1Mφ-exosomes (Exos) in the development of osteoporosis (OP) and the involvement of microRNA (miR)-98 and dual specificity phosphatase 1 (DUSP1). A murine model of OP was established using ovariectomies (OVX). Bone loss was observed in OVX-treated mice, as manifested by reduced bone mineral density and decreased number of bone trabecula. The bone loss was further aggravated by treatment with M1Mφ-Exos. Exos also suppressed osteogenic differentiation of MC3T3-E1 cells. miRNA microarray analysis revealed that the miR-98 level was notably upregulated in cells after Exo treatment, and DUSP1 was confirmed as a target of miR-98. Meanwhile, downregulation of miR-98 or upregulation of DUSP1 restored the osteogenic differentiation ability of MC3T3-E1 cells. In addition, upregulation of DUSP1 reduced bone loss in murine bone tissues and suppressed JNK phosphorylation. In summary, M1Mφ-derived exosomal miR-98 exacerbates bone loss and OP by downregulating DUSP1 and activating the JNK signaling pathway. miR-98 may therefore serve as a therapeutic target in OP management.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Exossomos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Osteoporose/metabolismo , Células 3T3 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/fisiologia , Células RAW 264.7 , Regulação para Cima/fisiologia
14.
Phytopathology ; 111(12): 2383-2391, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33961494

RESUMO

Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most prevalent viruses causing yellow dwarf disease in wheat in China. The biology and pathology of BYDV-GAV are well studied; however, gene functions and molecular mechanisms of BYDV-GAV disease development are unclear because of the lack of a reverse genetics system. In this study, a full-length complementary DNA (cDNA) clone of BYDV-GAV was constructed and expressed via Agrobacterium-mediated inoculation of Nicotiana benthamiana. Virions produced by BYDV-GAV in N. benthamiana were transmitted to wheat by an aphid vector after acquisition via a sandwich feeding method. Infectivity of the cDNA clone in wheat was verified via reverse transcription PCR and western blot assays, and the recombinant virus elicited typical reddening symptoms in oats and was transmitted between wheat plants. These results confirm the production of biologically active transmissible virions. Using the BYDV-GAV infectious clone, we demonstrate that viral protein P4 was involved in cell-to-cell movement and stunting symptoms in wheat. This is the first report describing the development of an infectious full-length cDNA clone of BYDV-GAV and provides a useful tool for virus-host-vector interaction studies.


Assuntos
Hordeum , Luteovirus , Células Clonais , DNA Complementar/genética , Luteovirus/genética , Doenças das Plantas
15.
Med Sci Monit ; 26: e923366, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32535612

RESUMO

BACKGROUND Lung adenocarcinoma currently accounts for the highest cancer-related mortality rate worldwide. MiR-21-5p has a vital role in various types of cancers. We have analyzed the miR-21-5p expression level, prognosis, and associated molecular pathways in lung adenocarcinoma with multiple bioinformatics databases. MATERIAL AND METHODS The Cancer Genome Atlas (TCGA) database was employed to fetch the miR-21-5p expression profile in multiple tumors. We used the UALCAN platform to assess the differential regulation of the miR-21-5p in healthy tissue and lung adenocarcinoma. Also, the survival prognosis of the miR-21-5p in each stage of lung adenocarcinoma was done by the Kaplan-Meier database. The STARBASE and UALCAN databases were employed to predict the miR-21-5p target genes, and the levels of target genes and their prognostic value were analyzed. RESULTS MiR-21-5p was overexpressed in the majority of human cancers. MiR-21-5p demonstrated escalated expression in the lung adenocarcinoma tissue in contrast to the normal tissue (P<0.05). Poor prognosis was witnessed in the miR-21-5p high expression group as compared to the low expression group (hazard ratio [HR]= 1.59, P<0.05). PDZD2 was predicted as a miR-21-5p potential target. We found a negative correlation between PDZD2 and miR-21-5p (r=-0.255, P<0.05). PDZD2 was downregulated in lung adenocarcinoma (P<0.05). Overexpression of PDZD2 was associated with a better prognosis of survival in lung adenocarcinoma patients (HR=0.45, P<0.05). CONCLUSIONS MiR-21-5p exhibits the potential to act as a biomarker for the survival prognosis of lung adenocarcinoma. It might be responsible for the onset and progression of lung adenocarcinoma through PDZD2 regulation.


Assuntos
Adenocarcinoma de Pulmão/genética , Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma de Pulmão/mortalidade , Moléculas de Adesão Celular/metabolismo , Bases de Dados Factuais , Bases de Dados Genéticas , Humanos , Neoplasias Pulmonares/mortalidade , MicroRNAs/metabolismo , Prognóstico , Modelos de Riscos Proporcionais
16.
Proc Natl Acad Sci U S A ; 117(7): 3779-3788, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015104

RESUMO

Plants and fungi are closely associated through parasitic or symbiotic relationships in which bidirectional exchanges of cellular contents occur. Recently, a plant virus was shown to be transmitted from a plant to a fungus, but it is unknown whether fungal viruses can also cross host barriers and spread to plants. In this study, we investigated the infectivity of Cryphonectria hypovirus 1 (CHV1, family Hypoviridae), a capsidless, positive-sense (+), single-stranded RNA (ssRNA) fungal virus in a model plant, Nicotiana tabacum CHV1 replicated in mechanically inoculated leaves but did not spread systemically, but coinoculation with an unrelated plant (+)ssRNA virus, tobacco mosaic virus (TMV, family Virgaviridae), or other plant RNA viruses, enabled CHV1 to systemically infect the plant. Likewise, CHV1 systemically infected transgenic plants expressing the TMV movement protein, and coinfection with TMV further enhanced CHV1 accumulation in these plants. Conversely, CHV1 infection increased TMV accumulation when TMV was introduced into a plant pathogenic fungus, Fusarium graminearum In the in planta F. graminearum inoculation experiment, we demonstrated that TMV infection of either the plant or the fungus enabled the horizontal transfer of CHV1 from the fungus to the plant, whereas CHV1 infection enhanced fungal acquisition of TMV. Our results demonstrate two-way facilitative interactions between the plant and fungal viruses that promote cross-kingdom virus infections and suggest the presence of plant-fungal-mediated routes for dissemination of fungal and plant viruses in nature.


Assuntos
Micovírus/fisiologia , Fusarium/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vírus do Mosaico do Tabaco/fisiologia , Fusarium/fisiologia
17.
Front Mol Biosci ; 7: 618896, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33898510

RESUMO

Objective: Graphene oxide (GO) has been widely used for various biological and biomedical applications due to its unique physiochemical properties. This study aimed to investigate the effects of cell penetrating peptide (CPP) modified and polyethylene-glycol- (PEG-) grafted GO (pGO) loaded with photosensitive agent 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-alpha (HPPH) and Epirubicin (EPI) (HPPH/EPI/CPP-pGO) on tumor growth in osteosarcoma. Methods: The HPPH/EPI/CPP-pGO were prepared, and then in vitro drug release assay was conducted. The detection of singlet oxygen (1O2) and cellular uptake of HPPH was performed as well. Next, the effects of control (saline solution), CPP-pGO, EPI, HPPH, HPPH/CPP-pGO, EPI/CPP-pGO, HPPH/EPI/pGO, and HPPH/EPI/CPP-pGO were evaluated by MTT assay, colony-forming assay, and cell apoptosis assay in MG-63 cells. Furthermore, the antitumor effects of HPPH/EPI/CPP-pGO on osteosarcoma xenograft mice were unraveled. Results: The 1O2 generation and cellular uptake of HPPH were significantly increased after CPP and pGO modification compared with free HPPH. In addition, compared with control cells, CPP-pGO treatment had low cytotoxicity in MG-63 cells. Compared with free HPPH or EPI, HPPH/CPP-pGO or EPI/CPP-pGO treatment significantly inhibited cell viability and colony forming number, as well as inducing cell apoptosis. HPPH/EPI-pGO treatment showed stronger inhibition effects on MG-63 cells than HPPH/CPP-pGO or EPI/CPP-pGO, and HPPH/EPI/CPP-pGO was the most effective one. Similarly, in vivo experiments revealed that, compared with control group, the tumor size and weight of osteosarcoma xenograft mice were obviously decreased after free HPPH or EPI treatment, which were further reduced in other groups, especially in HPPH/EPI/CPP-pGO group. Conclusion: HPPH/EPI/CPP-pGO had superior tumor-inhibiting effects in vitro and in vivo on osteosarcoma.

18.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(6): 705-711, 2019 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-31270050

RESUMO

OBJECTIVE: To study the value of plasma miRNA23-a and miRNA-451 as potential biomarkers for early diagnosis of non-small cell lung cancer (NSCLC). METHODS: Fifty patients with NSCLC and 50 healthy control subjects were recruited for testing the plasma levels of miRNA23-a and miRNA-451 and their expression levels in the tumor tissues using qRT-PCR. The correlations of the plasma levels of miRNA23-a and miRNA-451 with their expressions in the tumor tissues were analyzed. The diagnostic power of CEA, miRNA23-a and miRNA-451 for NSCLC was evaluated using the receiver-operating characteristics (ROC) curves and the area under the ROC curves (AUC). In the NSCLC cell line A549, we tested the effect of inhibition of miRNA-23a and miRNA-451 on the expression levels of SPRY2 and MIF mRNA using qRT-PCR. RESULTS: The expression levels of miRNA-23a and miRNA-451 in NSCLC tissues was significantly associated with smoking, tumor size, lymph node metastasis and TNM stage (P < 0.05). Compared with those in the control group, miRNA-23a level was significantly increased while miRNA-451 was significantly down-regulated in the tumor tissues and plasma of NSCLC patients. The plasma levels of miRNA-23a and miRNA-45 were strongly correlated with their expression levels in the tumor tissues. ROC analysis showed that for the diagnosis of NSCLC, the AUC, sensitivity and specificity of either miRNA-23a or miRNA-451 were significantly higher than those of CEA (P < 0.05). The combination of miRNA23-a and miRNA-451 markedly improved the AUC (0.900), sensitivity (78%) and specificity (86%) for the diagnosis. In A549 cells, inhibition of miRNA23-a and miRNA-451 resulted in significantly increased expression levels of SPRY2 mRNA and MIF mRNA, respectively. CONCLUSIONS: miRNA-23a and miRNA-451 can be used as potential biomarkers for early diagnosis of NSCLC, and their combined detection can be more effective for the diagnosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Detecção Precoce de Câncer , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/genética , Proteínas de Membrana , MicroRNAs , Curva ROC
19.
J Virol Methods ; 265: 53-58, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576723

RESUMO

Tomato virus diseases occur all around the world, causing serious yield losses. To detect these viruses quickly and provide a basis for disease control, a multiplex reverse transcription polymerase chain reaction system was established for simultaneous detection of Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), Tomato chlorosis virus (ToCV), Potato virus Y (PVY) and Potato virus X (PVX) in tomato plants, with 6 pairs of specific primers being designed based on the coat protein (CP) genes of these viruses. Transcriptional elongation factor-1α (EF-1α) from tomato was added to the multiplex RT-PCR reaction system to prevent false negatives. The concentration of the primers, annealing temperature, annealing time, extension time and amplification cycles were optimized. Expected fragments of 159 bp (ToCV), 262 bp (PVY), 362 bp (EF-1α), 430 bp (TMV), 500 bp (TSWV), 600 bp (CMV) and 705 bp (PVX) were amplified by this multiplex RT-PCR system, and their origin was confirmed by DNA sequencing. This method will have a wide application in virus detection of field samples.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Solanum lycopersicum/virologia , Proteínas do Capsídeo/genética , Primers do DNA/genética , Vírus de Plantas/genética , Vírus de RNA/genética
20.
Mol Plant Pathol ; 19(12): 2623-2634, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30047227

RESUMO

Phytoplasmas are insect-transmitted phytopathogenic bacteria, which secrete effector proteins that are often responsible for altering the plant morphology and behaviours of their vectors. Phytoplasma multifunctional effector proteins TENGU and SAP11 induce typical witches' broom symptoms, but their mode of action remains unknown. Previously, we have identified a SAP11-like effector from wheat blue dwarf phytoplasma, SWP1, which induces witches' broom symptoms in Nicotiana benthamiana. In this study, we observed that SWP1-expressing transgenic Arabidopsis thaliana plants showed typical witches' broom symptoms. On overexpression of SWP1 truncation mutants in N. benthamiana, we identified that the coiled-coil domain and nuclear localization were responsible for the induction of witches' broom symptoms. In addition, using yeast two-hybrid and bimolecular fluorescence complementation assays, we demonstrated that SWP1 interacts with A. thaliana transcription factor TCP18 (BRC1), the key negative regulator of branching signals in various plant species. Moreover, in planta co-expression analysis showed that SWP1 promotes the degradation of BRC1 via a proteasome system. These findings suggest that the phytoplasma effector SWP1 induces witches' broom symptoms through targeting of BRC1 and promoting its degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA