Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Biomaterials ; 313: 122796, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226654

RESUMO

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Assuntos
Neoplasias da Mama , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Senescência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Engenharia Genética/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanopartículas/química , Anticorpos de Cadeia Única/química , Evasão Tumoral/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Apoptose/efeitos dos fármacos , Biomimética/métodos , Antígenos B7
2.
Biomaterials ; 309: 122609, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754290

RESUMO

The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Metabolismo dos Lipídeos , Mitocôndrias , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Antígenos CD36/metabolismo , Estruturas Metalorgânicas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Lipase/metabolismo
3.
Adv Sci (Weinh) ; 11(20): e2308310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520730

RESUMO

CD47 blockade has emerged as a promising immunotherapy against liver cancer. However, the optimization of its antitumor effectiveness using efficient drug delivery systems or combinations of therapeutic agents remains largely incomplete. Here, patients with liver cancer co-expressing CD47 and CDC7 (cell division cycle 7, a negative senescence-related gene) are found to have the worst prognosis. Moreover, CD47 is highly expressed, and senescence is inhibited after the development of chemoresistance, suggesting that combination therapy targeting CD47 and CDC7 to inhibit CD47 and induce senescence may be a promising strategy for liver cancer. The efficacy of intravenously administered CDC7 and CD47 inhibitors is limited by low uptake and short circulation times. Here, inhibitors are coloaded into a dual-targeted nanosystem. The sequential release of the inhibitors from the nanosystem under acidic conditions first induces cellular senescence and then promotes immune responses. In an in situ liver cancer mouse model and a chemotherapy-resistant mouse model, the nanosystem effectively inhibited tumor growth by 90.33% and 85.15%, respectively. Overall, the nanosystem in this work achieved the sequential release of CDC7 and CD47 inhibitors in situ to trigger senescence and induce immunotherapy, effectively combating liver cancer and overcoming chemoresistance.


Assuntos
Antígeno CD47 , Neoplasias Hepáticas , Animais , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antígeno CD47/metabolismo , Humanos , Modelos Animais de Doenças , Senescência Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas , Fatores Imunológicos/farmacologia , Linhagem Celular Tumoral , Agentes de Imunomodulação/farmacologia
4.
Food Chem X ; 21: 101047, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187940

RESUMO

To study the effect of storage (for 0, 3, 6, and 12 months) on the flavor of green tea (GT), we monitored the volatile organic compounds (VOCs) in GT through gas chromatography (GC) combined with ion mobility spectrometry and headspace solid-phase micro extraction, GC-MS (mass spectrometry). Then, relative odor activity value (ROAV) was applied to analyze the aroma contribution of the VOCs. During storage, the polyphenol and caffeine contents gradually decreased from 22.38 % to 18.51 % and from 4.37 % to 3.74 %, respectively, and the total soluble sugar first increased and then decreased (from 4.89 % to 7.16 % and then 5.02 %). Although the total free amino acid contents showed a fluctuating trend, the content of cysteamine increased gradually. The contents of VOCs with positive contribution to GT aroma, including linalool, geraniol, nonanal, and 6-methyl-5-hepten-2-one, decreased. They also contributed less in the ROAV after storage. The ROAVs of nonanal, linalool, and geraniol decreased from 3.37 to 0.79, from 100 to 38.21, and from 2.98 to 1.8, respectively, after 12 months of storage. Principal component analysis can be used to identify the samples with different storage durations based on these data. Given the increase in amount of cysteamine and decrease in that of linalool oxide, oxidation may be not the only factor responsible for tea quality in storage.

5.
J Sci Food Agric ; 104(3): 1645-1655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37850306

RESUMO

BACKGROUND: The interaction between food allergens and plant polyphenols has become a safe and effective management strategy to prevent food allergies. Ovalbumin (OVA) is the most abundant allergen in egg whites. Resveratrol (RES) is a plant polyphenol that is abundant in red grapes, berries, and peanuts, and has an anti-allergic effect on allergy-related immune cells. However, there is little information about the effect of RES on the allergenicity of OVA. In this study, the effect of RES on the allergenicity of OVA was investigated. RESULTS: Molecular docking and spectroscopic studies indicated that the addition of RES changed the structure of OVA. The digestion and transfer rate of OVA-RES were effectively improved with an in vitro gastrointestinal digestion model and Caco-2 cell model, especially when the molar ratio of OVA-RES was 1:20. Meanwhile, the KU812 cell degranulation assay proved that the potential allergenicity was remarkably decreased while the molar ratios of OVA-RES were increased to 1:20. Furthermore, hydrogen bonds and van der Waals forces were the dominating forces to stabilize the OVA-RES complexes. CONCLUSION: All the findings demonstrated that the potential allergenicity of OVA was reduced when interacting with RES, and RES can be a potential food material for preparing a hypoallergenic protein, especially for egg allergy. © 2023 Society of Chemical Industry.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Humanos , Ovalbumina/química , Resveratrol , Simulação de Acoplamento Molecular , Células CACO-2 , Imunoglobulina E , Hipersensibilidade Alimentar/prevenção & controle
6.
Int J Biol Macromol ; 258(Pt 1): 128340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000575

RESUMO

Interactions between plant polyphenols and food allergens may be a new way to alleviate food allergies. The non-covalent interactions between the major allergen from peanut (Ara h 2) with procyanidin dimer (PA2) were therefore characterized using spectroscopic, thermodynamic, and molecular simulation analyses. The main interaction between the Ara h 2 and PA2 was hydrogen bonding. PA2 statically quenched the intrinsic fluorescence intensity and altered the conformation of the Ara h 2, leading to a more disordered polypeptide structure with a lower surface hydrophobicity. In addition, the in vitro allergenicity of the Ara h 2-PA2 complex was investigated using enzyme-linked immunosorbent assay (ELISA) kits. The immunoglobulin E (IgE) binding capacity of Ara h 2, as well as the release of allergenic cytokines, decreased after interacting with PA2. When the ratio of Ara h 2-to-PA2 was 1:50, the IgE binding capacity was reduced by around 43 %. This study provides valuable insights into the non-covalent interactions between Ara h 2 and PA2, as well as the potential mechanism of action of the anti-allergic reaction caused by binding of the polyphenols to the allergens.


Assuntos
Hipersensibilidade a Amendoim , Proantocianidinas , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proantocianidinas/metabolismo , Glicoproteínas/química , Imunoglobulina E/metabolismo , Polifenóis/metabolismo , Proteínas de Plantas/química
7.
Cancer Sci ; 114(10): 3873-3883, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591615

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous blood cancer. Effective immunotherapies for AML are hindered by a lack of understanding of the tumor microenvironment (TME). Here, we retrieved published single-cell RNA sequencing data for 128,688 cells derived from 29 bone marrow aspirates, including 21 AML patients and eight healthy donors. We established a global tumor ecosystem including nine main cell types. Myeloid, T, and NK cells were further re-clustered and annotated. Developmental trajectory analysis indicated that exhausted CD8+ T cells might develop via tissue residual memory T cells (TRM) in the AML TME. Significantly higher expression levels of exhaustion molecules in AML TRM cells suggested that these cells were influenced by the TME and entered an exhausted state. Meanwhile, the upregulation of checkpoint molecules and downregulation of granzyme were also observed in AML NK cells, suggesting an exhaustion state. In conclusion, our comprehensive profiling of T/NK subpopulations provides deeper insights into the AML immunosuppressive ecosystem, which is critical for immunotherapies.

8.
J Control Release ; 360: 630-646, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414221

RESUMO

Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 µm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 µm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8+ T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.


Assuntos
Antígeno B7-H1 , Melanoma , Camundongos , Animais , Linfócitos T CD8-Positivos , Lipopolissacarídeos , Doxorrubicina , Melanoma/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
9.
PeerJ ; 11: e15529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366424

RESUMO

Mangrove plants contain a variety of secondary metabolites, including flavonoids, polyphenols, and volatiles, which are important for their survival and adaptation to the coastal environment, as well as for producing bioactive compounds. To reveal differences in these compounds among five mangrove species' leaf, root, and stem, the total contents of flavonoids and polyphenols, types and contents of volatiles were determined, analyzed and compared. The results showed that Avicennia marina leaves contained the highest levels of flavonoids and phenolics. In mangrove parts, flavonoids are usually higher than phenolic compounds. A total of 532 compounds were detected by a gas chromatography-mass spectrometry (GC-MS) method in the leaf, root, and stem parts of five mangrove species. These were grouped into 18 classes, including alcohols, aldehydes, alkaloids, alkanes, etc. The number of volatile compounds in A. ilicifolius (176) and B. gymnorrhiza (172) was lower than in the other three species. The number of volatile compounds and their relative contents differed among all three parts of five mangrove species, where the mangrove species factor had a greater impact than the part factor. A total of 71 common compounds occurring in more than two species or parts were analyzed by a PLS-DA model. One-way ANOVA revealed 18 differential compounds among mangrove species and nine differential compounds among parts. Principal component analysis and hierarchical clustering analysis showed that both unique and common compounds significantly differed in composition and concentration between species and parts. In general, A. ilicifolius and B. gymnorrhiza differed significantly from the other species in terms of compound content, while the leaves differed significantly from the other parts. VIP screening and pathway enrichment analysis were performed on 17 common compounds closely related to mangrove species or parts. These compounds were mainly involved in terpenoid pathways such as C10 isoprenoids and C15 isoprenoids and fatty alcohols. The correlation analysis showed that the content of flavonoids/phenolics, the number of compounds, and the content of some common compounds in mangroves were correlated with their salt and waterlogging tolerance levels. These findings will help in the development of genetic varieties and medicinal utilization of mangrove plants.


Assuntos
Avicennia , Polifenóis , Polifenóis/análise , Flavonoides/análise , Folhas de Planta/química , Terpenos/análise
10.
J Microbiol Methods ; 211: 106774, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379888

RESUMO

Myxobacteria have potential application value in developing new antibiotics and environmental protection. In this study, in order to establish a more suitable method for diversity studies of myxobacteria, the effects of primers, polymerase chain reaction (PCR) approaches and sample preservation methods on the results were compared by Illumina high-throughput sequencing. The results showed that the relative abundance and operational taxonomic unit (OTU) ratio of myxobacteria amplified by the universal primers accounted for 0.91-1.85% and 2.82-4.10% of total bacteria, indicating that myxobacteria were the dominant bacteria both in population and species numbers. The relative abundance and OTU number and ratio of myxobacteria amplified by the myxobacteria semi-specific primers were significantly higher than those amplified by the universal primers, of which the primer pair W2/802R specifically amplified myxobacteria of suborder Cystobacterineae, while the primer pair W5/802R mainly amplified myxobacteria of suborder Sorangineae and also amplified more species of suborder Nannocystineae at the same time. Among three PCR approaches, the relative abundance and OTU ratio of myxobacteria amplified by the touch-down PCR were the highest. More myxobacterial OTUs were detected in most dried samples. In conclusion, the combination of the myxobacteria semi-specific primer pairs W2/802R and W5/802R, touch-down PCR, and dry preservation of samples were more conducive to diversity studies of myxobacteria.


Assuntos
Myxococcales , Myxococcales/genética , Microbiologia do Solo , Bactérias , Reação em Cadeia da Polimerase
11.
Adv Sci (Weinh) ; 10(21): e2300878, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162268

RESUMO

Advanced liver cancer is the most fatal malignant cancer, and the clinical outcomes of treatment are not very satisfactory due to the complexity and heterogeneity of the tumor. Combination therapy can efficiently enhance tumor treatment by stimulating multiple pathways and regulating the tumor immune microenvironment. Nanodrug delivery systems have become attractive candidates for combined strategies for liver cancer treatment. This study reports a nano ultrasound contrast agent (arsenic trioxide (ATO)/PFH NPs@Au-cRGD) to integrate diagnosis and treatment for efficient ultrasound imaging and liver cancer therapy. This nanodrug delivery system promotes tumor-associated antigens release through ATO-induced ferroptosis and photothermal-induced immunogenic cell death, enhancing the synergistic effects of ATO and photothermal therapy in human Huh7 and mouse Hepa1-6 cells. This drug delivery system successfully activates the antitumor immune response and promotes macrophage M1 polarization in tumor microenvironment with low side effects in subcutaneous and orthotopic liver cancer. Furthermore, tumor metastasis is inhibited and long-term immunological memory is also established in orthotopic liver cancer when the nanodrug delivery system is combined with anti-programmed death-ligand 1 (PD-L1) immunotherapy. This safe nanodrug delivery system can enhance antitumor therapy, inhibit lung metastasis, and achieve visual assessment of therapeutic efficacy, providing substantial potential in clinic applications for liver cancer.


Assuntos
Hipertermia Induzida , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Meios de Contraste , Terapia Fototérmica , Fototerapia/métodos , Hipertermia Induzida/métodos , Camundongos Endogâmicos , Ultrassonografia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Imunoterapia , Microambiente Tumoral
12.
J Agric Food Chem ; 71(23): 9110-9119, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256970

RESUMO

Given that roasting changes the structure and allergenicity of peanut allergens, the structural information of peanut allergens must be expounded to explain the alteration in their allergenicity. This work focused on allergen aggregations (AAs) in roasted peanuts. IgE recognition capability was assessed via western blot analysis. The disulfide bond (DB) rearrangement and chemical modification in AAs were identified by combining mass spectroscopy and software tools, and structural changes induced by cross-links were displayed by molecular dynamics and PyMOL software. Results showed that AAs were strongly recognized by IgE and cross-linked mainly by DBs. The types of DB rearrangement in AAs included interprotein (98 peptide pairs), intraprotein (22 peptide pairs), and loop-linked (6 peptides) DBs. Among allergens, Ara h 2 and Ara h 6 presented the most cysteine residues to cross-linkf with others or themselves. DB rearrangement involved IgE epitopes and induced structural changes. Ara h 1 and Ara h 3 were predominantly chemically modified. Moreover, chemical modification altered the local structures of proteins, which may change the allergenic potential of allergens.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Arachis/química , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas/química , Imunoglobulina E/metabolismo , Dissulfetos , Albuminas 2S de Plantas
13.
Int J Biol Macromol ; 240: 124457, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068535

RESUMO

Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 µm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.


Assuntos
Lactoglobulinas , Proantocianidinas , Bovinos , Animais , Lactoglobulinas/química , Simulação de Acoplamento Molecular , Emulsões/química , Polifenóis
14.
J Pers Med ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109060

RESUMO

BACKGROUND: Full endoscopic lumbar interbody fusion (Endo-LIF) is a representative recent emerging minimally invasive operation. The hidden blood loss (HBL) in an Endo-LIF procedure and its possible risk factors are still unclear. METHODS: The blood loss (TBL) was calculated by Gross formula. Sex, age, BMI, hypertension, diabetes, ASA classification, fusion levels, surgical approach type, surgery time, preoperative RBC, HGB, Hct, PT, INR, APTT, Fg, postoperative mean arterial pressure, postoperative heart rate, Intraoperative blood loss (IBL), patient blood volume were included to investigate the possible risk factors by correlation analysis and multiple linear regression between variables and HBL. RESULTS: Ninety-six patients (23 males, 73 females) who underwent Endo-LIF were retrospective analyzed in this study. The HBL was 240.11 (65.51, 460.31) mL (median [interquartile range]). Fusion levels (p = 0.002), age (p = 0.003), hypertension (p = 0.000), IBL (p = 0.012), PT (p = 0.016), preoperative HBG (p = 0.037) were the possible risk factors. CONCLUSION: Fusion levels, younger age, hypertension, prolonged PT, preoperative HBG are possible risk factors of HBL in an Endo-LIF procedure. More attention should be paid especially in multi-level minimally invasive surgery. The increase of fusion levels will lead to a considerable HBL.

15.
Food Chem ; 421: 136180, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105121

RESUMO

This paper has investigated the residual allergenicity of cow's milk treated by enzymatic hydrolysis combined with Lactobacillus fermentation (Lb. Plantarum and Lb. helveticus). The treated products were comprehensively evaluated by SDS-PAGE, RP-HPLC, ELISA, and Caco-2 models. And the allergenic changes of residual allergenic peptides were explored by DC-T co-culture. The results showed that alkaline protease was the most suitable protease that targeted to destroy epitopes of milk major allergen than trypsin, pepsin, and papain by prediction. And the residual epitopes were reduced to four which was treated by alkaline protease combined with Lb. helveticus. The transport absorption capacity of treated products was almost twice than milk. Meanwhile, the seven residual allergenic peptides were obtained from treated products. Among them, αs1-casein (AA84-90) can be used as an immune tolerance peptide for further study. Lb. helveticus combined with alkaline protease treatment may be considered promising strategy of protect from cow's milk allergy.


Assuntos
Lactobacillus helveticus , Lactobacillus plantarum , Hipersensibilidade a Leite , Humanos , Animais , Bovinos , Feminino , Leite , Alérgenos , Epitopos , Células CACO-2 , Caseínas , Peptídeos , Proteínas do Leite
16.
Food Res Int ; 164: 112377, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737962

RESUMO

The natural whey protein is unstable, to achieve more efficient utilization, the functional properties of whey protein were modified by changing its structure, and enzymatic cross-linking is one of the common methods in dairy products to change the functional characterization. This study was conducted with objective to evaluate the structural and functional of whey protein which was cross-linked by polyphenol oxidase from Agaricus bisporus. Whey protein was cross-linked by polyphenol oxidase, and the polymers and dimers were revealed by SDS-PAGE and LC-MS/MS, the structural alterations of the polymers were analyzed by UV-vis, fluorescence spectroscopy and SEM, and the effects of functional properties of whey protein after cross-linked were also explored. Results showed that dimer and high polymer of ß-lactoglobulin were formed, the secondary structure of whey protein was exhibited a significant variation, and the microstructure changed obviously. Moreover, the foaming and antioxidant activity of whey protein was enhanced although the emulsifying was reduced after cross-linked. These findings emphasize the feasible application of enzymatic cross-linking in improving the functional properties of whey protein, and provide a new direction for changing the traditional processing technology of whey protein and developing high-quality products.


Assuntos
Catecol Oxidase , Espectrometria de Massas em Tandem , Proteínas do Soro do Leite/química , Catecol Oxidase/metabolismo , Cromatografia Líquida , Polímeros
17.
Cell Mol Immunol ; 20(2): 143-157, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596875

RESUMO

Due to their broad functional plasticity, myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury (APAP-ALI). A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment. Here, we identified the function of IFN-I in the myeloid compartment during APAP-ALI. Utilizing single-cell RNA sequencing, we characterized the cellular atlas and dynamic progression of liver CD11b+ cells post APAP-ALI in WT and STAT2 T403A mice, which was further validated by immunofluorescence staining, bulk RNA-seq, and functional experiments in vitro and in vivo. We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages, leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+ restorative macrophage maturation, contributing to efficient liver repair. Overall, we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Neutrófilos/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
18.
Small ; 19(4): e2204133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420659

RESUMO

The acquired resistance to Osimertinib (AZD9291) greatly limits the clinical benefit of patients with non-small cell lung cancer (NSCLC), whereas AZD9291-resistant NSCLCs are prone to metastasis. It's challenging to overcome AZD9291 resistance and suppress metastasis of NSCLC simultaneously. Here, a nanocatalytic sensitizer (VF/S/A@CaP) is proposed to deliver Vitamin c (Vc)-Fe(II), si-OTUB2, ASO-MALAT1, resulting in efficient inhibition of tumor growth and metastasis of NSCLC by synergizing with AHP-DRI-12, an anti-hematogenous metastasis inhibitor by blocking the amyloid precursor protein (APP)/death receptor 6 (DR6) interaction designed by our lab. Fe2+ released from Vc-Fe(II) generates cytotoxic hydroxyl radicals (•OH) through Fenton reaction. Subsequently, glutathione peroxidase 4 (GPX4) is consumed to sensitize AZD9291-resistant NSCLCs with high mesenchymal state to ferroptosis due to the glutathione (GSH) depletion caused by Vc/dehydroascorbic acid (DHA) conversion. By screening NSCLC patients' samples, metastasis-related targets (OTUB2, LncRNA MALAT1) are confirmed. Accordingly, the dual-target knockdown plus AHP-DRI-12 significantly suppresses the metastasis of AZD9291-resistant NSCLC. Such modality leads to 91.39% tumor inhibition rate in patient-derived xenograft (PDX) models. Collectively, this study highlights the vulnerability to ferroptosis of AZD9291-resistant tumors and confirms the potential of this nanocatalytic-medicine-based modality to overcome critical AZD9291 resistance and inhibit metastasis of NSCLC simultaneously.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Compostos Ferrosos , Linhagem Celular Tumoral
19.
Gene ; 855: 147124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539045

RESUMO

The R2R3-MYB transcription factors are widely involved in the regulation of plant growth, biotic and abiotic stress responses. Meanwhile, seed germination, which is stimulated by internal and external environments, is a critical stage in the plant life cycle. However, the identification, characterization, and expression profiling of the Populus euphratica R2R3-MYB family in drought response during seed germination have been unknown. Our study attempted to identify and characterize the R2R3-MYB genes in P. euphratica (PeR2R3-MYBs) and explore how R2R3-MYBs trigger the drought and abscisic acid (ABA) response mechanism in its seedlings. Based on the analysis of comparative genomics, 174 PeR2R3-MYBs were identified and expanded driven by whole genome duplication or segment duplication events. The analysis of Ka/Ks ratios showed that, in contrast to most PeR2R3-MYBs, the other PeR2R3-MYBs were subjected to positive selection in P. euphratica. Further, the expression data of PeR2R3-MYBs under drought stress and ABA treatment, together with available functional data for Arabidopsis thaliana MYB genes, supported the hypothesis that PeR2R3-MYBs involved in response to drought are dependent or independent on ABA signaling pathway during seed germination, especially PeR2R3-MYBs with MYB binding sites (MBS) cis-element and/or tandem duplication. This study is the first report on the genome-wide analysis of PeR2R3-MYBs, as well as the other two Salicaceae species. The duplication events and differential expressions of PeR2R3-MYBs play important roles in enhancing the adaptation to drought desert environment. Our results provide a reference for prospective functional studies of R2R3-MYBs of poplars and lay the foundation for new breeding strategies to improve the drought tolerance of P. euphratica.


Assuntos
Arabidopsis , Populus , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Populus/genética , Populus/metabolismo , Genes myb , Proteínas de Plantas/metabolismo , Secas , Estudos Prospectivos , Melhoramento Vegetal , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
20.
Food Funct ; 14(2): 746-758, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537006

RESUMO

Live, inactivated Lactobacillus or their metabolites have various beneficial functions, which may alleviate food allergy. This study aimed to investigate the intervention effects of three forms of Lactobacillus delbrueckii subsp. bulgaricus (Ld) on cell degranulation, intestinal barrier function, and intestinal mucosal immunity against soybean allergy. First, the intervention effect of Ld on cell degranulation was investigated using the KU812 cell degranulation model. Then, the Caco-2 cell inflammation model was used to evaluate their anti-inflammatory capacity, and the cell monolayer model was constructed to test the protective effects of different forms of Ld on the intestinal barrier. Finally, mesenteric lymph node (MLN) cells from mice were used to assess the ability of different forms of Ld to regulate the balance of cytokines associated with food allergy in the immune tissue of the intestinal mucosa. Results showed that live bacteria and heat-inactivated bacteria could inhibit the degranulation of KU812 cells, mainly by significantly inhibiting the release of histamine, IL-6 and TNF-α. Both live bacteria and heat-inactivated bacteria could also suppress the increase of IL-6 and IL-8 in Caco-2 cells induced by lipopolysaccharide (LPS). The culture supernatant of bacteria and live bacteria showed better ability to maintain the integrity and permeability of the intestinal epithelial barrier. In addition, heat-inactivated bacteria could return the values of IFN-γ and IL-10 to normal levels and restore the balance of IFN-γ/IL-4, thereby reversing the immune deviation of MLN cells. Therefore, three forms of Ld have potential for the treatment of soybean allergy.


Assuntos
Antialérgicos , Hipersensibilidade , Lactobacillus delbrueckii , Humanos , Animais , Camundongos , Lactobacillus delbrueckii/metabolismo , Antialérgicos/metabolismo , Células CACO-2 , Glycine max , Interleucina-6/metabolismo , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA