Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Medicine (Baltimore) ; 102(34): e34866, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653800

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS: In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS: Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1ß, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1ß, CXCL8, and p-STAT3. CONCLUSION: Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas , Transdução de Sinais , Simulação de Acoplamento Molecular , Células Epiteliais , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
2.
Medicine (Baltimore) ; 102(29): e33990, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478241

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. The long non-coding RNA (lncRNA) has been found to have great potential as a prognostic biomarker or therapeutic target for cancer patients. However, the prognostic value and tumor immune infiltration of lncRNAs in HCC has yet to be fully elucidated. To identify prognostic biomarkers of lncRNA in HCC by integrated bioinformatics analysis and explore their functions and relationship with tumor immune infiltration. The prognostic risk assessment model for HCC was constructed by comprehensively using univariate/multivariate Cox regression analysis, Kaplan-Meier survival analysis, and the least absolute shrinkage and selection operator regression analysis. Subsequently, the accuracy, independence, and sensitivity of our model were evaluated, and a nomogram for individual prediction in the clinic was constructed. Tumor immune microenvironment (TIME), immune checkpoints, and human leukocyte antigen alleles were compared in high- and low-risk patients. Finally, the functions of our lncRNA signature were examined using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and gene set enrichment analysis. A 6-lncRNA panel of HCC consisting of RHPN1-AS1, LINC01224, CTD-2510F5.4, RP1-228H13.5, LINC01011, and RP11-324I22.4 was eventually identified, and show good performance in predicting the survivals of patients with HCC and distinguishing the immunomodulation of TIME of high- and low-risk patients. Functional analysis also suggested that this 6-lncRNA panel may play an essential role in promoting tumor progression and immune regulation of TIME. In this study, 6 potential lncRNAs were identified as the prognostic biomarkers in HCC, and the regulatory mechanisms involved in HCC were initially explored.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Prognóstico , Neoplasias Hepáticas/genética , Biologia Computacional , Biomarcadores , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
3.
Phytomedicine ; 118: 154984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487253

RESUMO

BACKGROUND: Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS: In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS: When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION: CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Gástricas , Animais , Camundongos , Transição Epitelial-Mesenquimal , Antineoplásicos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/genética , Caderinas , Linhagem Celular Tumoral
4.
J Ethnopharmacol ; 315: 116702, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37257705

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Kushen injection (CKI) is a representative medication of Chinese herbal injection and is often used in the adjuvant treatment of nasopharyngeal carcinoma (NPC), but its antitumor mechanism is poorly understood. AIM OF THE STUDY: To preliminarily elucidate the effects and possible mechanisms of CKI on NPC. METHODS: In this work, we explored the possible molecular mechanisms of CKI against NPC by using network pharmacology and molecular docking. In addition, proteomics was used to explore the localization and quantitative information of protein in NPC C666-1 cells after the intervention of CKI, and enrichment analysis was used to obtain the potential targets and pathways. Finally, the effect and the core targets of CKI in the intervention of NPC were explored in vitro experiments. RESULTS: Network pharmacology analysis identified three active components of CKI and 13 key targets. Molecular docking analysis showed that TNF, PTEN, CCND1, MAPK3, IL6, HIF1A, MYC had high affinity with corresponding components. Then the key pathway, cell cycle and the core targets MYC, CCND1, and P15 related to the key pathway were obtained. The results of in vitro experiments showed that CKI could inhibit the proliferation, migration, and invasion of NPC 5-8F cells and C666-1 cells, induce apoptosis of C666-1 cells, and arrest cell cycle G0/G1 phase. In addition, RT-qPCR and western blot showed that the expression of P15 was up-regulated and E2F4, E2F5, c-Myc, CCND1, and P107 was down-regulated in 5-8F cells and C666-1 cells intervened by CKI. CONCLUSION: The key pathway, cell cycle and the corresponding core targets MYC, CCND1, and P15 were obtained from network pharmacology, molecular docking, and proteomics. CKI could inhibit the proliferation, migration, and invasion of NPC cells, induce apoptosis of C666-1 cells. Especially CKI may arrest cell cycle G0/G1 phase through regulating targets MYC/P15/CCND1 of cell cycle pathway.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais , Neoplasias Nasofaríngeas/tratamento farmacológico , Ciclina D1/genética
5.
Sci Rep ; 13(1): 1373, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697459

RESUMO

Stomach adenocarcinoma (STAD) is a type of cancer which often at itsadvanced stage apon diagnosis and mortality in clinical practice. Several factors influencethe prognosis of STAD, including the expression and regulation of immune cells in the tumor microenvironment. We here investigated the biomarkers related to the diagnosis and prognosis of gastric cancer, hoping to provide insights for the diagnosis and treatment of gastric cancer in the future. STAD and normal patient RNA sequencing data sets were accessed from the cancer genome atlas (TCGA database). Differential genes were determined and obtained by using the R package DESeq2. The stromal, immune, and ESTIMATE scores are calculated by the ESTIMATE algorithm, followed by the modular genes screening using the R package WGCNA. Subsequently, the intersection between the modular gene and the differential gene was taken and the STRING database was used for PPI network module analysis. The R packages clusterProfiler, enrichplot, and ggplot2 were used for GO and KEGG enrichment analysis. Cox regression analysis was used to screen survival-related genes, and finally, the R package Venn Diagram was used to take the intersection and obtain 7 hub genes. The time-dependent ROC curve and Kaplan-Meier survival curve were used to find the SERPINE1 gene, which plays a critical role in prognosis. Finally, the expression pattern, clinical characteristics, and regulatory mechanism of SERPINE1 were analyzed in STAD. We revealed that the expression of SERPINE1 was significantly increased in the samples from STAD compared with normal samples. Cox regression, time-dependent ROC, and Kaplan-Meier survival analyses demonstrated that SERPINE1 was significantly related to the adverse prognosis of STAD patients. The expression of SERPINE1 increased with the progression of T, N, and M classification of the tumor. In addition, the results of immune infiltration analysis indicated that the immune cells' expression were higher in high SERPINE1 expression group than that in low SERPINE1 expression group, including CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils and other immune cells. SERPINE1 was closely related to immune cells in the STAD immune microenvironment and had a synergistic effect with the immune checkpoints PD1 and PD-L1. In conclusion, we proved that SERPINE1 is a promising prognostic and diagnostic biomarker for STAD and a potential target for immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Linfócitos T CD8-Positivos , Prognóstico , Biomarcadores , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Biologia Computacional , Mineração de Dados , Microambiente Tumoral/genética , Inibidor 1 de Ativador de Plasminogênio/genética
6.
Chin Med ; 18(1): 7, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641437

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS: In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS: In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION: ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.

7.
Front Pharmacol ; 13: 998218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188623

RESUMO

Introduction: Systematic evaluation of the clinical efficacy and safety of Brucea javanica oil emulsion injection (BJOEI) in combination with chemotherapy in the treatment of malignant pleural effusion (MPE). Methods: The study searched CNKI, Wanfang database, VIP database, SinoMed, PubMed, Embase, the Cochrane Library, and the Web of Science database and retrieved randomized controlled trials (RCTs) on the treatment of MPE with BJOEI in combination with chemotherapy from seven electronic databases from inception to 31 March 2022. Meta-analysis and sensitivity analysis were performed using Revman 5.4 and Stata 13.0 software. Results: Ultimately, 30 RCTs with 2035 patients were included, including 1002 cases in the control group and 1033 cases in the treatment group. The results of the meta-analysis showed that the overall efficacy rate of BJOEI combined with chemotherapy was higher in the treatment of MPE compared with chemotherapy alone (RR = 1.45, 95%CI: 1.36-1.54, p < 0.00001). And it could improve the Karnofsky (KPS) score (RR = 1.54, 95%CI: 1.41-1.68, p < 0.00001), reduce adverse reactions such as fever (RR = 0.82, 95%CI:0.60-1.12), chest pain (RR = 0.90, 95%CI: 0.67-1.21), gastrointestinal reactions (RR = 0.70, 95%CI: 0.57-0.87, p < 0.005), and leukopenia (RR = 0.51, 95%CI: 0.43-0.61, p < 0.00001). Conclusion: BJOEI combined with chemotherapy has better clinical efficacy than chemotherapy alone in the treatment of MPE. It can further improve KPS score, improve patients' quality of life, and reduce the occurrence of adverse reactions. However, the conclusions of this study need to be confirmed by further randomized, double-blind, controlled trials with large sample size, reasonable design, and strict implementation.

8.
Cells ; 11(16)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010627

RESUMO

Gastric carcinoma (GC) heterogeneity represents a major barrier to accurate diagnosis and treatment. Here, we established a comprehensive single-cell transcriptional atlas to identify the cellular heterogeneity in malignant epithelial cells of GC using single-cell RNA sequencing (scRNA-seq). A total of 49,994 cells from nine patients with paired primary tumor and normal tissues were analyzed by multiple strategies. This study focused on the malignant epithelial cells, which were divided into three subtypes, including pit mucous cells, chief cells, and gastric and intestinal cells. The trajectory analysis results suggest that the differentiation of the three subtypes could be from the pit mucous cells to the chief cells and then to the gastric and intestinal cells. Lauren's histopathology of GC might originate from various subtypes of malignant epithelial cells. The functional enrichment analysis results show that the three subtypes focused on different biological processes (BP) and pathways related to tumor development. In addition, we generated and validated the prognostic signatures for predicting the OS in GC patients by combining the scRNA-seq and bulk RNA sequencing (bulk RNA-seq) datasets. Overall, our study provides a resource for understanding the heterogeneity of GC that will contribute to accurate diagnosis and prognosis.


Assuntos
Carcinoma , Neoplasias Gástricas , Células Epiteliais/patologia , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
9.
Biomed Res Int ; 2022: 6213865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342754

RESUMO

Background: The Chinese patent drug Yinzhihuang granule (YZHG) is used to treat hepatitis B. This research is aimed at exploring the multicomponent synergistic mechanism of YZHG in the treatment of inflammation-cancer transformation of hepar and at providing new evidence and insights for its clinical application. Methods: To retrieve the components and targets of Yinzhihuang granules. The differentially expressed genes (DEGs) of hepar inflammation-cancer transformation were obtained from TTD, PharmGKB, and GEO databases. Construct the compound-prediction target network and the key module network using Cytoscape 3.7.1. Results: The results show that hepatitis B and hepatitis C shared a common target, MMP2. CDK1 and TOP2A may play an important role in the treatment with YZHG in hepatitis B inflammatory cancer transformation. KEGG pathway enrichment showed that key genes of modules 1, 2, and 4 were mainly enriched in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis signaling pathway. Conclusion: The multicomponent, multitarget, and multichannel pharmacological benefits of YZHG in the therapy of inflammation-cancer transition of hepar are directly demonstrated by network pharmacology, providing a scientific basis for its mechanism.


Assuntos
Medicamentos de Ervas Chinesas , Hepatite B , Neoplasias , Biologia Computacional , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite B/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Medicina Tradicional Chinesa , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacologia em Rede
10.
J Ethnopharmacol ; 285: 114852, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838619

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pancreatic cancer is a common malignancy worldwide due to its poor prognosis and high mortality rate. It is clinically proven that the combination of chemotherapeutic drugs and Traditional Chinese Medicine injections (TCMIs) significantly improves the therapeutic effect. AIM OF THE STUDY: To evaluate the efficacy and clinical benefits of TCMIs in combination with chemotherapy in the treatment of pancreatic cancer and to explore the mechanism of clinical advantage of Aidi injection. METHODS: Randomized controlled trials (RCTs) were searched in databases by NMA before December 29, 2020. WinBUGS 1.4, Stata 14.0, and R 4.0.4 software were used for calculations. All results were expressed as odds ratios and 95% credible intervals. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. And then, biological experiments were integrated to verify the results of network pharmacology analysis. (PROSPERO ID: CRD42021283559). RESULTS: A total of 33 RCTs with 8 TCMIs and 2011 patients were included. The results of NMA showed that Aidi injection can significantly improve the clinical efficacy (OR = 0.34, 95%CI: 0.16-0.74), and the clinical advantage was that it can significantly alleviate the leukopenia and thrombocytopenia caused by chemotherapy (OR = 5.65, 95%CI: 1.18-28.13). A total of 23 chemical compounds and 280 potential targets for Aidi injection were obtained from the online databases. Among them, there were 22 compounds, 50 targets and 211 signaling pathways closely related to leukopenia. Five genes were predicted to be core targets of ADI in alleviating leukopenia, and 2 of them (TP53 and VEGFA) were confirmed by biological experiments as regulatory targets of ADI in the treatment of PC. CONCLUSIONS: In conclusion, TCMIs in combination with chemotherapy, can improve clinical efficacy and safety in the treatment of pancreatic cancer. However, the overall evidence base is low, and large samples with multi-center RCTs are still needed to support further research findings. Aidi injection can alleviate leukopenia mainly by intervening in oxidative stress, regulating cell proliferation and apoptosis, and regulating the inflammatory response. The combined application of NMA, network pharmacology, and biological experiments provides a reference for clinical evaluation and mechanism of action exploration of other drugs.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Metanálise em Rede , Farmacologia em Rede , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Injeções
11.
Medicine (Baltimore) ; 100(51): e27112, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941025

RESUMO

BACKGROUND: The traditional Chinese medicine prescription Suhexiang Pill (SHXP), a classic prescription for the treatment of plague, has been recommended in the 2019 Guideline for coronavirus disease 2019 (COVID-19) diagnosis and treatment of a severe type of COVID-19. However, the bioactive compounds and underlying mechanisms of SHXP for COVID-19 prevention and treatment have not yet been elucidated. This study investigates the mechanisms of SHXP in the treatment of COVID-19 based on network pharmacology and molecular docking. METHODS: First, the bioactive ingredients and corresponding target genes of the SHXP were screened from the traditional Chinese medicine systems pharmacology database and analysis platform database. Then, we compiled COVID-19 disease targets from the GeneCards gene database and literature search. Subsequently, we constructed the core compound-target network, the protein-protein interaction network of the intersection of compound targets and disease targets, the drug-core compound-hub gene-pathway network, module analysis, and hub gene search by the Cytoscape software. The Metascape database and R language software were applied to analyze gene ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, AutoDock software was used for molecular docking of hub genes and core compounds. RESULTS: A total of 326 compounds, 2450 target genes of SHXP, and 251 genes related to COVID-19 were collected, among which there were 6 hub genes of SHXP associated with the treatment of COVID-19, namely interleukin 6, interleukin 10, vascular endothelial growth factor A, signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor (TNF), and epidermal growth factor. Functional enrichment analysis suggested that the effect of SHXP against COVID-19 is mediated by synergistic regulation of several biological signaling pathways, including Janus kinase/ STAT3, phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), T cell receptor, TNF, Nuclear factor kappa-B, Toll-like receptor, interleukin 17, Chemokine, and hypoxia-inducible factor 1 signaling pathways. SHXP may play a vital role in the treatment of COVID-19 by suppressing the inflammatory storm, regulating immune function, and resisting viral invasion. Furthermore, the molecular docking results showed an excellent binding affinity between the core compounds and the hub genes. CONCLUSION: This study preliminarily predicted the potential therapeutic targets, signaling pathways, and molecular mechanisms of SHXP in the treatment of severe COVID-19, which include the moderate immune system, relieves the "cytokine storm," and anti-viral entry into cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
12.
Chin Med ; 16(1): 121, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809653

RESUMO

BACKGROUND: Compound kushen injection (CKI), a Chinese patent drug, is widely used in the treatment of various cancers, especially neoplasms of the digestive system. However, the underlying mechanism of CKI in pancreatic cancer (PC) treatment has not been totally elucidated. METHODS: Here, to overcome the limitation of conventional network pharmacology methods with a weak combination with clinical information, this study proposes a network pharmacology approach of integrated bioinformatics that applies a weighted gene co-expression network analysis (WGCNA) to conventional network pharmacology, and then integrates molecular docking technology and biological experiments to verify the results of this network pharmacology analysis. RESULTS: The WGCNA analysis revealed 2 gene modules closely associated with classification, staging and survival status of PC. Further CytoHubba analysis revealed 10 hub genes (NCAPG, BUB1, CDK1, TPX2, DLGAP5, INAVA, MST1R, TMPRSS4, TMEM92 and SFN) associated with the development of PC, and survival analysis found 5 genes (TSPOAP1, ADGRG6, GPR87, FAM111B and MMP28) associated with the prognosis and survival of PC. By integrating these results into the conventional network pharmacology study of CKI treating PC, we found that the mechanism of CKI for PC treatment was related to cell cycle, JAK-STAT, ErbB, PI3K-Akt and mTOR signalling pathways. Finally, we found that CDK1, JAK1, EGFR, MAPK1 and MAPK3 served as core genes regulated by CKI in PC treatment, and were further verified by molecular docking, cell proliferation assay, RT-qPCR and western blot analysis. CONCLUSIONS: Overall, this study suggests that the optimized network pharmacology approach is suitable to explore the molecular mechanism of CKI in the treatment of PC, which provides a reference for further investigating biomarkers for diagnosis and prognosis of PC and even the clinical rational application of CKI.

13.
Front Cell Dev Biol ; 9: 742421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646828

RESUMO

Gastric carcinoma (GC) is a severe tumor of the digestive tract with high morbidity and mortality and poor prognosis, for which novel treatment options are urgently needed. Compound Kushen injection (CKI), a classical injection of Chinese medicine, has been widely used to treat various tumors in clinical practice for decades. In recent years, a growing number of studies have confirmed that CKI has a beneficial therapeutic effect on GC, However, there are few reports on the potential molecular mechanism of action. Here, using systems pharmacology combined with proteomics analysis as a core concept, we identified the ceRNA network, key targets and signaling pathways regulated by CKI in the treatment of GC. To further explore the role of these key targets in the development of GC, we performed a meta-analysis to compare the expression differences between GC and normal gastric mucosa tissues. Functional enrichment analysis was further used to understand the biological pathways significantly regulated by the key genes. In addition, we determined the significance of the key genes in the prognosis of GC by survival analysis and immune infiltration analysis. Finally, molecular docking simulation was performed to verify the combination of CKI components and key targets. The anti-gastric cancer effect of CKI and its key targets was verified by in vivo and in vitro experiments. The analysis of ceRNA network of CKI on GC revealed that the potential molecular mechanism of CKI can regulate PI3K/AKT and Toll-like receptor signaling pathways by interfering with hub genes such as AKR1B1, MMP2 and PTGERR3. In conclusion, this study not only partially highlighted the molecular mechanism of CKI in GC therapy but also provided a novel and advanced systems pharmacology strategy to explore the mechanisms of traditional Chinese medicine formulations.

14.
Front Genet ; 12: 654517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539726

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer. METHODS: Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes. RESULTS: We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate. CONCLUSION: The findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.

15.
Front Pharmacol ; 12: 739673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552496

RESUMO

Introduction: As non-small cell lung cancer (NSCLC) seriously threatens human health, several clinical studies have reported that Chinese herbal injections (CHIs) in combination with and gemcitabine plus cisplatin (GP) are beneficial. This multidimensional network meta-analysis aimed to compare the clinical efficacy and safety of different CHIs in combination with GP against NSCLC. Methods: Randomized controlled trials (RCTs) for the treatment of NSCLC were retrieved from seven electronic databases from inception to April 30, 2020. Study selection and data extraction were based on a priori criteria. Data analysis was performed using Stata 13.0, WinBUGS 14.0 software. Multidimensional cluster analysis was performed using the "scatterplot3d" package in R 3.6.1 software. Results: This network meta-analysis included 71 eligible RCTs and 10 Chinese herbal injections. Delisheng injection and Kangai injection had the highest probability in terms of clinical effectiveness rate (94.60%) and gastrointestinal reactions (82.62%) when combined with GP compared with the other interventions. Compound Kushen injection combined with GP ranked ahead of the other interventions in terms of performance status (73.36%) and abnormal liver function (87.17%). Shenmai injection combined with GP had the highest probability in terms of leukopenia (94.59%) and thrombocytopenia (99.18%). Conclusion: The current evidence revealed that CHIs combined with GP have a better impact on patients with NSCLC than GP alone. Aidi injection, Compound kushen injection, and Kanglaite injection deserve more attention of clinicians when combined with GP in patients with NSCLC. Additionally, due to the limitations of this network meta-analysis, further well-designed, large-sample, multicenter RCTs are required to support our findings adequately.

16.
J Ethnopharmacol ; 279: 114386, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34224810

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Esophageal cancer, as a high incidence of gastrointestinal cancer, has an indelible impact on human life and health. The combination of Chinese herbal injections and chemotherapy is commonly applied in the treatment of Esophageal cancer. AIM OF THE STUDY: This study aimed to confirm the clinical advantage of Compound Kushen Injection to treat esophageal cancer and explore its molecular mechanism. METHODS: The network meta-analysis method was used for the clinical evaluation of anti-tumor Chinese herbal injections. Initially, several electronic databases were searched to identify randomized controlled trials regarding Chinese herbal injections to treat esophageal cancer from their inception to September 5, 2020. Then, WinBugs and Stata software was used to calculate and analyze the outcome indicators, including total clinical efficiency, improvement of quality of life and adverse reactions. Furthermore, the surface under the cumulative ranking curve and three-dimensional cluster analysis were used to rank the efficacy and safety of Chinese herbal injections about each outcome. Cell Counting Kit-8 assay was used to observe the effect of Compound Kushen Injection on the proliferation of esophageal cancer cells. Real-Time Quantitative PCR and Western Blot analysis were used to detect the mRNA and protein expression of EGFR and AURKA in ESCA cells. RESULTS: The surface under the cumulative ranking curve of Compound Kushen Injection combined with chemotherapy in total clinical efficiency, quality of life, reduction of nausea and vomiting were ranking at 89.1%, 81.8% and 92.4%, respectively. Compound Kushen Injection was determined as the dominant variety in the treatment of esophageal cancer which can inhibit the proliferation of esophageal cancer cells and downregulate the overexpression of EGFR and AURKA mRNA and protein. CONCLUSION: In this study, network meta-analysis was applied to confirm that Compound Kushen Injection has a curative effect on esophageal cancer and is superior to other anti-tumor Chinese herbal injections. Combined with the network pharmacology and in vitro experiment, the mechanism of Compound Kushen Injection inhibiting the proliferation of esophageal cancer cells by regulating the abnormal expression of EGFR and AURKA was revealed.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Farmacologia em Rede
17.
Front Pharmacol ; 12: 656724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177576

RESUMO

Introduction: Given the wide utilization of Chinese herbal injections in the treatment of nasopharyngeal carcinoma (NPC), this network meta-analysis (NMA) was devised to compare the clinical efficacy and safety of different Chinese herbal injections combined with concurrent chemoradiotherapy (CCRT) against NPC. Methods: Randomized controlled trials (RCTs) were retrieved from seven electronic databases from the date of database establishment to October 5, 2020. Study selection and data extraction conformed to a priori criteria. Focusing on clinical effective rate, performance status, grade ≥3 oral mucositis, nausea and vomiting, leukopenia, and thrombopenia, this NMA was performed with Review Manager 5.3.5, Stata 13.1, WinBUGS 1.4.3, and R 4.0.3 software. Results: Ten inventions from 37 RCTs involving 2,581 participants with NPC that evaluated the clinical effective rate, nausea and vomiting, leukopenia, thrombopenia, and grade ≥3 oral mucositis were included. Compared with CCRT alone, Elemene injection and Compound Kushen injection were associated with significantly improved clinical effective rates, and Elemene injection plus CCRT had the highest probability in terms of clinical effective rate (78.07%) compared with the other interventions. Shenqifuzheng injection, Xiaoaiping injection, and Shenmai injection ranked the best in terms of performance status (79.02%), nausea and vomiting (86.35%), and grade ≥3 oral mucositis (78.14%) when combined with CCRT. Kangai injection combined with CCRT ranked ahead of the other injections in terms of leukopenia (90.80%) and thrombopenia (91.04%), and had a better impact on improving performance status and reducing leukopenia, thrombopenia, grade ≥3 oral mucositis, and nausea and vomiting in the multidimensional cluster analysis. Conclusion: Current clinical evidence indicates that Elemene injection combined with CCRT has the best clinical effective rate and that Kangai injection might have a comprehensively better impact on improving performance status and reducing adverse reactions against NPC. Additionally, due to the limitations of this NMA, more multicenter, high-quality, and head-to-head RCTs are needed to properly support our findings.

18.
Front Oncol ; 11: 802727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155200

RESUMO

Stomach adenocarcinoma (STAD) is one of the most malignant cancers that endanger human health. There is growing evidence that competitive endogenous RNA (ceRNA) regulatory networks play an important role in various human tumors. However, the complexity and behavioral characteristics of the ceRNA network in STAD are still unclear. In this study, we constructed a ceRNA regulatory network to identify the potential prognostic biomarkers associated with STAD. The expression profile of lncRNA, miRNA, and mRNA was downloaded from The Cancer Genome Atlas (TCGA). After performing bioinformatics analysis, the CCDC144NL-AS1/hsa-miR-145-5p/SERPINE1 ceRNA network associated to STAD prognosis of STAD was obtained. The CCDC144NL-AS1/SERPINE1 axis in the ceRNA network was identified by correlation analysis and considered as a clinical prognosis model by Cox regression analysis. In addition, methylation analysis indicated that the abnormal upregulation of CCDC144NL-AS1/SERPINE1 axis might be related to the aberrant methylation of some sites, and immune infiltration analysis suggested that CCDC144NL-AS1/SERPINE1 axis probably influences the alteration of tumor immune microenvironment and the occurrence and development of STAD. In particular, the CCDC144NL-AS1/SERPINE1 axis based on the ceRNA network constructed in the present study might be an important novel factor correlating with the diagnosis and prognosis of STAD.

19.
Front Pharmacol ; 11: 631170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33708126

RESUMO

Background: As non-small cell lung cancer (NSCLC) seriously threatens human health, several clinical studies have reported that Chinese herbal injections (CHIs) combined with vinorelbine and cisplatin (NP) are beneficial. This multidimensional network meta-analysis was performed to explore the preferable options among different CHIs for treating NSCLC. Methods: A literature search was performed in several databases to identify randomized controlled trials (RCTs) of CHIs in the treatment of NSCLC from inception to January 31, 2019. Final included studies met the eligibility criteria and methodological quality recommendations. Data analysis was performed using Stata 13.0 and WinBUGS 14.0 software. Each outcome was presented as an odds ratio and the surface under the cumulative ranking curve value (SCURA). The "scatterplot3d" package in R 3.6.1 software was used to perform multidimensional cluster analysis. Results: Ultimately, 97 eligible RCTs involving 7,440 patients and 14 CHIs were included in this network meta-analysis. Combined with NP chemotherapy, Kanglaite injection plus NP exhibited a better impact on the clinical effectiveness rate (SCURA probability: 78.34%), and Javanica oil emulsion injection plus NP was better in the performance status (95.44%). Huachansu injection plus NP was dominant in reducing thrombocytopenia (92.67%) and gastrointestinal reactions (92.52%). As to multidimensional cluster analysis, Shenmai injection plus NP was superior considering improving the clinical effectiveness rate, performance status and relieving leukopenia. Conclusions: The combination of CHIs and NP has a better impact on patients with NSCLC than NP alone. Among them, Shenmai injection plus NP, Kanglaite injection plus NP and Javanica oil emulsion injection plus NP were notable. Nevertheless, more multicenter and better designed RCTs are needed to validate our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA