Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(24): e2301721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340601

RESUMO

Non-invasive detection and precise localization of deep lesions have attracted significant attention for both fundamental and clinical studies. Optical modality techniques are promising with high sensitivity and molecular specificity, but are limited by shallow tissue penetration and the failure to accurately determine lesion depth. Here the authors report in vivo ratiometric surface-enhanced transmission Raman spectroscopy (SETRS) for non-invasive localization and perioperative surgery navigation of deep sentinel lymph nodes in live rats. The SETRS system uses ultrabright surface-enhanced Raman spectroscopy (SERS) nanoparticles with a low detection limit of 10 pM and a home-built photosafe transmission Raman spectroscopy setup. The ratiometric SETRS strategy is proposed based on the ratio of multiple Raman spectral peaks for obtaining lesion depth. Via this strategy, the depth of the phantom lesions in ex vivo rat tissues is precisely determined with a mean-absolute-percentage-error of 11.8%, and the accurate localization of a 6-mm-deep rat popliteal lymph node is achieved. The feasibility of ratiometric SETRS allows the successful perioperative navigation of in vivo lymph node biopsy surgery in live rats under clinically safe laser irradiance. This study represents a significant step toward the clinical translation of TRS techniques, providing new insights for the design and implementation of in vivo SERS applications.


Assuntos
Nanopartículas , Linfonodo Sentinela , Ratos , Animais , Análise Espectral Raman/métodos , Nanopartículas/química , Imagens de Fantasmas , Lasers
2.
Food Funct ; 13(2): 978-989, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35015017

RESUMO

Microencapsulation is a promising technique to improve the bioavailability and mask the unpleasant smell of DHA oils. Yet, how the encapsulated DHA oils are 'released' and 'digested' within the gastrointestinal tract (GIT) and the effect of the wall material and source of DHA have been largely unknown. Here, two commercial DHA microcapsules from algae oil (A-DHA) and tuna oil (T-DHA) with 100% whey protein (WP) and 80% casein and 20% WP (C-WP) as wall materials were evaluated in vitro respectively. The release ratio was nearly linearly increased to 77.7% and 41.7% after the simulated gastric phase for T-DHA and A-DHA microcapsules, respectively. In contrast to A-DHA microcapsules for which the release of DHA approached equilibrium in the later intestinal phase, a decline in the release ratio was shown for T-DHA microcapsules perhaps due to the interaction of T-DHA with bile salts resulting in the formation of micelles. The more stable release behaviors might suggest a better performance of A-DHA coated by WP, which enables sustainable release during GIT digestion. This is supported by the better ability to resist gastric proteolysis for A-DHA microcapsules. Additionally, T-DHA (27.5%) showed a lower lipid digestibility than A-DHA (68.5%) in the end due to their structure difference. Significantly positive correlations were found for both microcapsules between DHA release ratio and protein hydrolysis. This study has provided quantitative information on the in vitro release and digestion of DHA microcapsules as influenced by the wall protein and DHA source. The findings are practically meaningful for future formulation of DHA microcapsules with controlled release rates at target sites of the GIT.


Assuntos
Caseínas/química , Ácidos Docosa-Hexaenoicos/química , Óleos de Peixe/química , Proteínas do Soro do Leite/química , Reatores Biológicos , Cápsulas/química , Liberação Controlada de Fármacos , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA