Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866681

RESUMO

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Arritmias Cardíacas , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Cálcio/metabolismo , Mutação
2.
Circ Cardiovasc Genet ; 10(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29237675

RESUMO

BACKGROUND: Mutations in LMNA (lamin A/C), which encodes lamin A and C, typically cause age-dependent cardiac phenotypes, including dilated cardiomyopathy, cardiac conduction disturbance, atrial fibrillation, and malignant ventricular arrhythmias. Although the type of LMNA mutations have been reported to be associated with susceptibility to malignant ventricular arrhythmias, the gene-based risk stratification for cardiac complications remains unexplored. METHODS AND RESULTS: The multicenter cohort included 77 LMNA mutation carriers from 45 families; cardiac disorders were retrospectively analyzed. The mean age of patients when they underwent genetic testing was 45±17, and they were followed for a median 49 months. Of the 77 carriers, 71 (92%) were phenotypically affected and showed cardiac conduction disturbance (81%), low left ventricular ejection fraction (<50%; 45%), atrial arrhythmias (58%), and malignant ventricular arrhythmias (26%). During the follow-up period, 9 (12%) died, either from end-stage heart failure (n=7) or suddenly (n=2). Genetic analysis showed truncation mutations in 58 patients from 31 families and missense mutations in 19 patients from 14 families. The onset of cardiac disorders indicated that subjects with truncation mutations had an earlier occurrence of cardiac conduction disturbance and low left ventricular ejection fraction, than those with missense mutations. In addition, the truncation mutation was found to be a risk factor for the early onset of cardiac conduction disturbance and the occurrence of atrial arrhythmias and low left ventricular ejection fraction, as estimated using multivariable analyses. CONCLUSIONS: The truncation mutations were associated with manifestation of cardiac phenotypes in LMNA-related cardiomyopathy, suggesting that genetic analysis might be useful for diagnosis and risk stratification.


Assuntos
Cardiomiopatias/genética , Predisposição Genética para Doença/genética , Lamina Tipo A/genética , Mutação , Adulto , Idoso , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cardiomiopatias/mortalidade , Cardiomiopatias/fisiopatologia , Saúde da Família , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
3.
PLoS One ; 11(10): e0164795, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764147

RESUMO

INTRODUCTION: Human induced pluripotent stem cells (hiPSCs) offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs). The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT), which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies. METHOD AND RESULTS: We generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05). Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs) between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05). Pre-incubation with 10 µM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05). CONCLUSIONS: We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Estimulação Elétrica , Modelos Biológicos , Taquicardia Ventricular/patologia , Taquicardia Ventricular/terapia , Tiazepinas/farmacologia , Adulto , Animais , Antiasmáticos/química , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Cálcio/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/transplante , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Tiazepinas/química , Tiazepinas/uso terapêutico , Transplante Heterólogo
4.
Heart Rhythm ; 13(1): 289-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26282245

RESUMO

BACKGROUND: Long-QT syndrome (LQTS) is an inherited arrhythmia characterized by prolonged ventricular repolarization and malignant tachyarrhythmias. LQT1, LQT2, and LQT3 are caused by mutations in KCNQ1 (LQT1), KCNH2 (LQT2), and SCN5A (LQT3), which account for approximately 90% of genotyped LQTS patients. Most cardiac events in LQT1 patients occur during exercise, whereas patients with LQT3 tend to have arrhythmic events during rest or asleep. OBJECTIVE: The study aimed to identify a genetic mutation in a Japanese man who presented with sinus node dysfunction and prolonged QT interval on exercise and epinephrine stress tests, as well as to clarify the electrophysiological properties of mutant channels. METHODS: LQTS-related genes were screened in this patient. Electrophysiological functional assays were conducted with a heterologous expression system. RESULTS: We identified a heterozygous missense SCN5A mutation, V2016M, which changes the last amino acid of the cardiac sodium channel. Electrophysiological analyses revealed that the mutant channels exhibited a loss-of-function feature, decreased peak sodium current densities (wild type 175.2 ± 17.6 pA/pF; V2016M 97.2 ± 16.0 pA/pF; P < .01). In addition, the mutant channels showed gain-of-function features: increased late sodium currents by protein kinase A activation (wild type 0.07 ± 0.01%; V2016M 0.17 ± 0.03%; P < .05) and impaired inactivation of sodium channels by protein kinase A or C activation. CONCLUSION: We identified an SCN5A mutation in a patient with sinus node dysfunction and epinephrine-induced QT prolongation, which was an atypical phenotype for LQT3. The electrophysiological properties of the mutant channels might be associated with the overlapping clinical features of the patient.


Assuntos
Epinefrina/farmacologia , Síndrome do QT Longo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Síndrome do Nó Sinusal , Síncope , Teste de Esforço/efeitos adversos , Teste de Esforço/métodos , Predisposição Genética para Doença , Humanos , Síndrome do QT Longo/complicações , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Masculino , Mutação de Sentido Incorreto , Síndrome do Nó Sinusal/diagnóstico , Síndrome do Nó Sinusal/etiologia , Simpatomiméticos/farmacologia , Síncope/diagnóstico , Síncope/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA