Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(34): 6506-6517, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35906072

RESUMO

Schwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding bands of Büngner, and remyelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined whether these enhancers are preprogrammed into the Schwann cell epigenome as poised enhancers before injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive histone H3 lysine 27 (H3K27) trimethylation rather than H3K27 acetylation. We find that most injury-induced enhancers are not marked as poised enhancers before injury indicating that injury-induced enhancers are not preprogrammed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using in vivo chromatin immunoprecipitation sequencing analysis in rat, we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the Sonic hedgehog (Shh) gene, which is only upregulated in repair Schwann cells compared with other stages of Schwann cell development. We used targeted deletions in male/female mice to show that the enhancers are required for robust induction of the Shh gene after injury.SIGNIFICANCE STATEMENT The proregenerative actions of Schwann cells after nerve injury depends on profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is preprogrammed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of JUN-bound injury enhancers in the Sonic hedgehog gene. Although many long-range enhancers drive expression of Sonic hedgehog at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for Sonic hedgehog induction in Schwann cells after injury.


Assuntos
Proteínas Hedgehog , Traumatismos dos Nervos Periféricos , Proteínas Proto-Oncogênicas c-jun , Animais , Feminino , Proteínas Hedgehog/metabolismo , Masculino , Camundongos , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Células de Schwann/metabolismo , Fator de Transcrição AP-1/metabolismo
2.
Front Immunol ; 11: 1185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612606

RESUMO

Indoleamine 2, 3-dioxygenase 1 (IDO; IDO1; INDO) is a rate-limiting enzyme that metabolizes the essential amino acid, tryptophan, into downstream kynurenines. Canonically, the metabolic depletion of tryptophan and/or the accumulation of kynurenine is the mechanism that defines how immunosuppressive IDO inhibits immune cell effector functions and/or facilitates T cell death. Non-canonically, IDO also suppresses immunity through non-enzymic effects. Since IDO targeting compounds predominantly aim to inhibit metabolic activity as evidenced across the numerous clinical trials currently evaluating safety/efficacy in patients with cancer, in addition to the recent disappointment of IDO enzyme inhibitor therapy during the phase III ECHO-301 trial, the issue of IDO non-enzyme effects have come to the forefront of mechanistic and therapeutic consideration(s). Here, we review enzyme-dependent and -independent IDO-mediated immunosuppression as it primarily relates to glioblastoma (GBM); the most common and aggressive primary brain tumor in adults. Our group's recent discovery that IDO levels increase in the brain parenchyma during advanced age and regardless of whether GBM is present, highlights an immunosuppressive synergy between aging-increased IDO activity in cells of the central nervous system that reside outside of the brain tumor but collaborate with GBM cell IDO activity inside of the tumor. Because of their potential value for the in vivo study of IDO, we also review current transgenic animal modeling systems while highlighting three new constructs recently created by our group. This work converges on the central premise that maximal immunotherapeutic efficacy in subjects with advanced cancer requires both IDO enzyme- and non-enzyme-neutralization, which is not adequately addressed by available IDO-targeting pharmacologic approaches at this time.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/enzimologia , Glioblastoma/imunologia , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Animais , Neoplasias Encefálicas/enzimologia , Modelos Animais de Doenças , Glioblastoma/enzimologia , Humanos , Neoplasias/enzimologia , Neoplasias/imunologia
3.
Skelet Muscle ; 6: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27651888

RESUMO

BACKGROUND: Cellular models of muscle disease are taking on increasing importance with the large number of genes and mutations implicated in causing myopathies and the concomitant need to test personalized therapies. Developing cell models relies on having an easily obtained source of cells, and if the cells are not derived from muscle itself, a robust reprogramming process is needed. Fibroblasts are a human cell source that works well for the generation of induced pluripotent stem cells, which can then be differentiated into cardiomyocyte lineages, and with less efficiency, skeletal muscle-like lineages. Alternatively, direct reprogramming with the transcription factor MyoD has been used to generate myotubes from cultured human fibroblasts. Although useful, fibroblasts require a skin biopsy to obtain and this can limit their access, especially from pediatric populations. RESULTS: We now demonstrate that direct reprogramming of urine-derived cells is a highly efficient and reproducible process that can be used to establish human myogenic cells. We show that this method can be applied to urine cells derived from normal individuals as well as those with muscle diseases. Furthermore, we show that urine-derived cells can be edited using CRISPR/Cas9 technology. CONCLUSIONS: With progress in understanding the molecular etiology of human muscle diseases, having a readily available, noninvasive source of cells from which to generate muscle-like cells is highly useful.


Assuntos
Reprogramação Celular , Desenvolvimento Muscular , Doenças Musculares/fisiopatologia , Proteína MyoD/metabolismo , Urina/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Células Clonais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Humanos , Doenças Musculares/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia
4.
EMBO Mol Med ; 4(7): 633-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517678

RESUMO

Hexokinase-II (HKII) is highly expressed in the heart and can bind to the mitochondrial outer membrane. Since cardiac hypertrophy is associated with a substrate switch from fatty acid to glucose, we hypothesized that a reduction in HKII would decrease cardiac hypertrophy after pressure overload. Contrary to our hypothesis, heterozygous HKII-deficient (HKII(+/-)) mice displayed increased hypertrophy and fibrosis in response to pressure overload. The mechanism behind this phenomenon involves increased levels of reactive oxygen species (ROS), as HKII knockdown increased ROS accumulation, and treatment with the antioxidant N-acetylcysteine (NAC) abrogated the exaggerated response. HKII mitochondrial binding is also important for the hypertrophic effects, as HKII dissociation from the mitochondria resulted in de novo hypertrophy, which was also attenuated by NAC. Further studies showed that the increase in ROS levels in response to HKII knockdown or mitochondrial dissociation is mediated through increased mitochondrial permeability and not by a significant change in antioxidant defenses. Overall, these data suggest that HKII and its mitochondrial binding negatively regulate cardiac hypertrophy by decreasing ROS production via mitochondrial permeability.


Assuntos
Cardiomegalia/metabolismo , Hexoquinase/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Cardiomegalia/patologia , Células Cultivadas , Fibrose , Heterozigoto , Hexoquinase/genética , Hexoquinase/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pressão , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 5(11): e13823, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21072205

RESUMO

BACKGROUND: Hexokinases (HKs) catalyze the first step in glucose metabolism. Of the three mammalian 100-kDa HK isoforms, HKI and II can bind to mitochondria and protect against cell death. HKIII does not bind mitochondria, and little is known about its regulation or cytoprotective effects. We studied the regulation of HKIII at the transcriptional and protein levels and investigated its role in cellular protection. METHODOLOGY/PRINCIPAL FINDINGS: We show that like HKII, HKIII expression is regulated by hypoxia, but other factors that regulate HKII expression have no effect on HKIII levels. This transcriptional regulation is partially dependent on hypoxia-inducible factor (HIF) signaling. We also demonstrate regulation at the protein level, as mutations in putative N-terminal substrate binding residues altered C-terminal catalytic activity, suggesting that HKIII activity is governed, in part, by interactions between these two domains. Overexpression of HKIII reduced oxidant-induced cell death, increased ATP levels, decreased the production of reactive oxygen species (ROS), and preserved mitochondrial membrane potential. HKIII overexpression was also associated with higher levels of transcription factors that regulate mitochondrial biogenesis, and greater total mitochondrial DNA content. Attempts to target HKIII to the mitochondria by replacing its N-terminal 32-amino-acid sequence with the mitochondrial-targeting sequence of HKII led to protein aggregation, suggesting that this region is necessary to maintain proper protein folding and solubility. CONCLUSIONS/SIGNIFICANCE: These results suggest that HKIII is regulated by hypoxia and there are functional interactions between its two halves. Furthermore, HKIII exerts protective effects against oxidative stress, perhaps by increasing ATP levels, reducing oxidant-induced ROS production, preserving mitochondrial membrane potential, and increasing mitochondrial biogenesis.


Assuntos
Citoproteção/genética , Regulação Enzimológica da Expressão Gênica , Hexoquinase/genética , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Domínio Catalítico/genética , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hexoquinase/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Microscopia Confocal , Mutação , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA