Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39054009

RESUMO

The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.


Assuntos
Dano ao DNA , Metanossulfonato de Etila , Mutação , Humanos , Metanossulfonato de Etila/farmacologia , Metanossulfonato de Etila/toxicidade , Mutação/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Brônquios/efeitos dos fármacos , Brônquios/citologia
2.
Environ Mol Mutagen ; 62(5): 306-318, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34050964

RESUMO

The organotypic human air-liquid-interface (ALI) airway tissue model has been used as an in vitro cell culture system for evaluating the toxicity of inhaled substances. ALI airway cultures are highly differentiated, which has made it challenging to evaluate genetic toxicology endpoints. In the current study, we assayed DNA damage with the high-throughput CometChip assay and quantified mutagenesis with Duplex Sequencing, an error-corrected next-generation sequencing method capable of detecting a single mutation per 107 base pairs. Fully differentiated human ALI airway cultures were treated from the basolateral side with 6.25 to 100 µg/mL ethyl methanesulfonate (EMS) over a period of 28 days. CometChip assays were conducted after 3 and 28 days of treatment, and Duplex Sequencing after 28 days of treatment. Treating the airway cultures with EMS resulted in time- and concentration-dependent increases in DNA damage and a concentration-dependent increase in mutant frequency. The mutations observed in the EMS-treated cultures were predominantly C → T transitions and exhibited a unique trinucleotide signature relative to the negative control. Measurement of physiological endpoints indicated that the EMS treatments had no effect on anti-p63-positive basal cell frequency, but produced concentration-responsive increases in cytotoxicity and perturbations in cell morphology, along with concentration-responsive decreases in culture viability, goblet cell and anti-Ki67-positive proliferating cell frequency, cilia beating frequency, and mucin secretion. The results indicate that a unified 28-day study can be used to measure several important safety endpoints in physiologically relevant human in vitro ALI airway cultures, including DNA damage, mutagenicity, and tissue-specific general toxicity.


Assuntos
Dano ao DNA , Células Epiteliais/patologia , Metanossulfonato de Etila/efeitos adversos , Mutagênese , Testes de Mutagenicidade/métodos , Mutação , Sistema Respiratório/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mutagênicos/efeitos adversos , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo
3.
Transl Psychiatry ; 8(1): 42, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29391397

RESUMO

Butyrate (BT) is a ubiquitous short-chain fatty acid (SCFA) principally derived from the enteric microbiome. BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant. BT and other SCFAs have also been associated with autism spectrum disorders (ASD), a condition associated with mitochondrial dysfunction. We have developed a lymphoblastoid cell line (LCL) model of ASD, with a subset of LCLs demonstrating mitochondrial dysfunction (AD-A) and another subset of LCLs demonstrating normal mitochondrial function (AD-N). Given the positive modulation of BT on mitochondrial function, we hypothesized that BT would have a preferential positive effect on AD-A LCLs. To this end, we measured mitochondrial function in ASD and age-matched control (CNT) LCLs, all derived from boys, following 24 and 48 h exposure to BT (0, 0.1, 0.5, and 1 mM) both with and without an in vitro increase in reactive oxygen species (ROS). We also examined the expression of key genes involved in cellular and mitochondrial response to stress. In CNT LCLs, respiratory parameters linked to adenosine triphosphate (ATP) production were attenuated by 1 mM BT. In contrast, BT significantly increased respiratory parameters linked to ATP production in AD-A LCLs but not in AD-N LCLs. In the context of ROS exposure, BT increased respiratory parameters linked to ATP production for all groups. BT was found to modulate individual LCL mitochondrial respiration to a common set-point, with this set-point slightly higher for the AD-A LCLs as compared to the other groups. The highest concentration of BT (1 mM) increased the expression of genes involved in mitochondrial fission (PINK1, DRP1, FIS1) and physiological stress (UCP2, mTOR, HIF1α, PGC1α) as well as genes thought to be linked to cognition and behavior (CREB1, CamKinase II). These data show that the enteric microbiome-derived SCFA BT modulates mitochondrial activity, with this modulation dependent on concentration, microenvironment redox state, and the underlying mitochondrial function of the cell. In general, these data suggest that BT can enhance mitochondrial function in the context of physiological stress and/or mitochondrial dysfunction, and may be an important metabolite that can help rescue energy metabolism during disease states. Thus, insight into this metabolic modulator may have wide applications for both health and disease since BT has been implicated in a wide variety of conditions including ASD. However, future clinical studies in humans are needed to help define the practical implications of these physiological findings.


Assuntos
Transtorno do Espectro Autista/metabolismo , Butiratos/metabolismo , Butiratos/farmacologia , Microbioma Gastrointestinal , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Criança , Humanos , Masculino
4.
Sci Rep ; 7(1): 4478, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667285

RESUMO

Mitoplasticity occurs when mitochondria adapt to tolerate stressors. Previously we hypothesized that a subset of lymphoblastoid cell lines (LCLs) from children with autistic disorder (AD) show mitoplasticity (AD-A), presumably due to previous environmental exposures; another subset of AD LCLs demonstrated normal mitochondrial activity (AD-N). To better understand mitoplasticity in the AD-A LCLs we examined changes in mitochondrial function using the Seahorse XF96 analyzer in AD and Control LCLs after exposure to trichloroacetaldehyde hydrate (TCAH), an in vivo metabolite of the environmental toxicant and common environmental pollutant trichloroethylene. To better understand the role of reactive oxygen species (ROS) in mitoplasticity, TCAH exposure was followed by acute exposure to 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases ROS. TCAH exposure by itself resulted in a decline in mitochondrial respiration in all LCL groups. This effect was mitigated when TCAH was followed by acute DMNQ exposure but this varied across LCL groups. DMNQ did not affect AD-N LCLs, while it neutralized the detrimental effect of TCAH in Control LCLs and resulted in a increase in mitochondrial respiration in AD-A LCLs. These data suggest that acute increases in ROS can activate mitochondrial protective pathways and that AD-A LCLs are better able to activate these protective pathways.


Assuntos
Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Hidrato de Cloral/análogos & derivados , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Hidrato de Cloral/efeitos adversos , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Prótons , Espécies Reativas de Oxigênio/metabolismo
5.
FASEB J ; 31(3): 904-909, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27864377

RESUMO

Autism spectrum disorder (ASD) is associated with physiological abnormalities, including abnormal redox and mitochondrial metabolism. Lymphoblastoid cell lines (LCLs) from some children with ASD exhibit increased oxidative stress, decreased glutathione redox capacity, and highly active mitochondria with increased vulnerability to reactive oxygen species (ROS). Because unaffected siblings (Sibs) of individuals with ASD share some redox abnormalities, we sought to determine whether LCLs from Sibs share ASD-associated mitochondrial abnormalities. We evaluated mitochondrial bioenergetics in 10 sets of LCLs from children with ASD, Sibs, and unrelated/unaffected controls (Cons) after acute increases in ROS. Additionally, intracellular glutathione and uncoupling protein 2 (UCP2) gene expressions were quantified. Compared to Sib LCLs, ASD LCLs exhibited significantly higher ATP-linked respiration, higher maximal and reserve respiratory capacity, and greater glycolysis and glycolytic reserve. ASD LCLs exhibited a significantly greater change in these parameters, with acute increases in ROS compared to both Sib and Con LCLs. Compared to Con, both ASD and Sib LCLs exhibited significantly higher proton leak respiration. Consistent with this, intracellular glutathione redox capacity was decreased and UCP2 gene expression was increased in both ASD and Sib compared to Con LCLs. These data indicate that mitochondrial respiratory function, not abnormal redox homeostasis, distinguishes ASD from unaffected LCLs.-Rose, S., Bennuri, S. C., Wynne, R., Melnyk, S., James, S. J., Frye, R. E. Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study.


Assuntos
Transtorno do Espectro Autista/metabolismo , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Adolescente , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Glutationa/metabolismo , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Irmãos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
6.
J Toxicol ; 2015: 573701, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688267

RESUMO

The association of autism spectrum disorders with oxidative stress, redox imbalance, and mitochondrial dysfunction has become increasingly recognized. In this study, extracellular flux analysis was used to compare mitochondrial respiration in lymphoblastoid cell lines (LCLs) from individuals with autism and unaffected controls exposed to ethylmercury, an environmental toxin known to deplete glutathione and induce oxidative stress and mitochondrial dysfunction. We also tested whether pretreating the autism LCLs with N-acetyl cysteine (NAC) to increase glutathione concentrations conferred protection from ethylmercury. Examination of 16 autism/control LCL pairs revealed that a subgroup (31%) of autism LCLs exhibited a greater reduction in ATP-linked respiration, maximal respiratory capacity, and reserve capacity when exposed to ethylmercury, compared to control LCLs. These respiratory parameters were significantly elevated at baseline in the ethylmercury-sensitive autism subgroup as compared to control LCLs. NAC pretreatment of the sensitive subgroup reduced (normalized) baseline respiratory parameters and blunted the exaggerated ethylmercury-induced reserve capacity depletion. These findings suggest that the epidemiological link between environmental mercury exposure and an increased risk of developing autism may be mediated through mitochondrial dysfunction and support the notion that a subset of individuals with autism may be vulnerable to environmental influences with detrimental effects on development through mitochondrial dysfunction.

7.
Cancer Prev Res (Phila) ; 7(7): 675-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778325

RESUMO

Although alcohol effects within the liver have been extensively studied, the complex mechanisms by which alcohol causes liver cancer are not well understood. It has been suggested that ethanol (EtOH) metabolism promotes tumor growth by increasing hepatocyte proliferation. In this study, we developed a mouse model of tumor promotion by chronic EtOH consumption in which EtOH feeding began 46 days after injection of the chemical carcinogen diethylnitrosamine (DEN) and continued for 16 weeks. With a final EtOH concentration of 28% of total calories, we observed a significant increase in the total number of preneoplastic foci and liver tumors per mouse in the EtOH+DEN group compared with corresponding pair-fed (PF)+DEN and chow+DEN control groups. We also observed a 4-fold increase in hepatocyte proliferation (P < 0.05) and increased cytoplasmic staining of active-ß-catenin in nontumor liver sections from EtOH+DEN mice compared with PF+DEN controls. In a rat model of alcohol-induced liver disease, we found increased hepatocyte proliferation (P < 0.05); depletion of retinol and retinoic acid stores (P < 0.05); increased expression of cytosolic and nuclear expression of ß-catenin (P < 0.05) and phosphorylated-glycogen synthase kinase 3ß (p-GSK3ß), P < 0.05; significant upregulation in Wnt7a mRNA expression; and increased expression of several ß-catenin targets, including, glutamine synthetase (GS), cyclin D1, Wnt1 inducible signaling pathways protein (WISP1), and matrix metalloproteinase-7(MMP7), P < 0.05. These data suggest that chronic EtOH consumption activates the Wnt/ß-catenin signaling pathways to increase hepatocyte proliferation, thus promoting tumorigenesis following an initiating insult to the liver.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Alquilantes/toxicidade , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Técnicas Imunoenzimáticas , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
8.
Alcohol Clin Exp Res ; 38(3): 672-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256560

RESUMO

BACKGROUND: In bone, NADPH oxidase (NOX)-derived reactive oxygen species (ROS) superoxide and/or hydrogen peroxide are an important stimulus for osteoclast differentiation and activity. Previously, we have demonstrated that chronic ethanol (EtOH) consumption generates excess NOX-dependent ROS in osteoblasts, which functions to stimulate nuclear factor kappa-ß receptor ligand (RANKL)-RANK signaling, thus increasing osteoclastogenesis and activity. This activity can be blocked by co-administration of EtOH with the pan-NOX inhibitor diphenylene idonium (DPI). METHODS: To test whether EtOH-induced bone loss is dependent on a functional NOX2 enzyme, 6-week-old female C57BL/6J-Ncf1/p47phox(-/-) (p47phox KO) and wild-type (WT) mice were pair-fed EtOH diets for 40 days. Bone loss was assessed by 3-point bending, micro-computed tomography and static histomorphometric analysis. Additionally, ST2 cultured cells were co-treated with EtOH and NOX inhibitors, DPI, gliotoxin, and plumbagin, after which changes in ROS production, and in RANKL and NOX mRNA expression were analyzed. RESULTS: In WT mice, EtOH treatment significantly reduced bone density and mechanical strength, and increased total osteoclast number and activity. In EtOH-treated p47phox KO mice, bone density and mechanical strength were completely preserved. EtOH p47phox KO mice had no changes in osteoclast numbers or activity, and no elevations in serum CTX or RANKL gene expression (p < 0.05). In both WT and p47phox KO mice, EtOH feeding reduced biochemical markers of bone formation (p < 0.05). In vitro EtOH exposure of ST2 cells increased ROS, which was blocked by pretreating with DPI or the NOX2 inhibitor gliotoxin. EtOH-induced RANKL and NOX2 gene expression were inhibited by the NOX4-specific inhibitor plumbagin. CONCLUSIONS: These data suggest that NOX2-derived ROS is necessary for EtOH-induced bone resorption. In osteoblasts, NOX2 and NOX4 appear to work in tandem to increase RANKL expression, whereas EtOH-mediated inhibition of bone formation occurs via a NOX2-independent mechanism.


Assuntos
Reabsorção Óssea/induzido quimicamente , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Reabsorção Óssea/enzimologia , Células Cultivadas , Feminino , Genótipo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Distribuição Aleatória
9.
J Pharmacol Exp Ther ; 343(2): 401-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892342

RESUMO

Chronic alcohol abuse results in decreased bone mineral density (BMD), which can lead to increased fracture risk. In contrast, low levels of alcohol have been associated with increased BMD in epidemiological studies. Alcohol's toxic skeletal effects have been suggested to involve impaired vitamin D/calcium homeostasis. Therefore, dietary vitamin D supplementation may be beneficial in reducing bone loss associated with chronic alcohol consumption. Six-week-old female C57BL/6J mice were pair-fed ethanol (EtOH)-containing liquid diets (10 or 36% total calories) for 78 days. EtOH exposure at 10% calories had no effects on any measured bone or serum parameter. EtOH consumption at 36% of calories reduced BMD and bone strength (P<0.05), decreased osteoblastogenesis, increased osteoclastogenesis, suppressed 1,25-hydroxyvitamin D3 [1,25(OH)2D3] serum concentrations (P<0.05), and increased apoptosis in bone cells compared with pair-fed controls. In a second study, female mice were pair-fed 30% EtOH diets with or without dietary supplementation with vitamin D3 (cholecalciferol; VitD) for 40 days. VitD supplementation in the EtOH diet protected against cortical bone loss, normalized alcohol-induced hypocalcaemia, and suppressed EtOH-induced expression of receptor of nuclear factor-κB ligand mRNA in bone. In vitro, pretreatment of 1,25(OH)2D3 in osteoblastic cells inhibited EtOH-induced apoptosis. In EtOH/VitD mice circulating 1,25(OH)2D3 was lower compared with mice receiving EtOH alone (P<0.05), suggesting increased sensitivity to feedback control of VitD metabolism in the kidney. These findings suggest dietary VitD supplementation may prevent skeletal toxicity in chronic drinkers by normalizing calcium homeostasis, preventing apoptosis, and suppressing EtOH-induced increases in bone resorption.


Assuntos
Densidade Óssea/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Osteoporose Pós-Menopausa/prevenção & controle , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Células Cultivadas , Depressores do Sistema Nervoso Central/antagonistas & inibidores , Colecalciferol/sangue , Colecalciferol/farmacologia , Etanol/antagonistas & inibidores , Feminino , Fêmur/patologia , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/induzido quimicamente , RNA/biossíntese , RNA/genética , Tomografia Computadorizada por Raios X , Vitamina D/sangue , Vitaminas/sangue , Aumento de Peso/efeitos dos fármacos
10.
Nutr Cancer ; 62(6): 774-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20661826

RESUMO

Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-methyl-N-nitrosourea, dietary intake of soy protein isolate (SPI) reduced mammary tumor occurrence but increased incidence of more invasive tumors in tumored rats, relative to the control diet casein. Here we evaluated whether mammary tumor progression in tumor-bearing rats lifetime exposed to SPI is associated with deregulated progesterone receptor (PR) isoform expression. In histologically normal mammary glands of rats with invasive ductal carcinoma lesions, PR-A protein levels were higher for SPI- than casein-fed rats, whereas PR-B was undetectable for both groups. Increased mammary PR-A expression was associated with higher transforming growth factor-beta1, stanniocalcin-1, and CD44 transcript levels; lower E-cadherin and estrogen receptor-alpha expression; and reduced apoptotic status in ductal epithelium. Serum progesterone (ng/ml) (CAS: 25.94 +/- 3.81; SPI: 13.19 +/- 2.32) and estradiol (pg/ml) (CAS: 27.9 +/- 4.49; SPI: 68.48 +/- 23.87) levels differed with diet. However, sera from rats of both diet groups displayed comparable mammosphere-forming efficiency in human MCF-7 cells. Thus, soy-rich diets may influence the development of more aggressive tumors by enhancing PR-A-dependent signaling in premalignant breast tissues.


Assuntos
Genisteína/administração & dosagem , Isoflavonas/administração & dosagem , Neoplasias Mamárias Experimentais/etiologia , Receptores de Progesterona/fisiologia , Animais , Carcinoma Ductal de Mama/etiologia , Carcinoma Intraductal não Infiltrante/etiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/genética , Glândulas Mamárias Animais/química , Neoplasias Mamárias Experimentais/química , Ratos , Receptores de Progesterona/análise , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA