Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519817

RESUMO

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Assuntos
Formação de Anticorpos , Humanos , Camundongos , Animais , Preparações Farmacêuticas
2.
J Pharm Sci ; 111(6): 1556-1564, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35167884

RESUMO

During the development of a therapeutic protein, its quality attributes that pertain to the primary structure must be appropriately characterized, commonly by LC-MS/MS peptide mapping experiments. Extracting attribute information from LC-MS/MS data requires knowledge of the attribute of interest. Therefore, it is important to understand all potential modifications on the therapeutic proteins. In this work, we performed UV and visible light irradiation experiments on several therapeutic proteins, with or without the presence of a photosensitizer. Light-induced modifications were detected and characterized by tryptic digestion followed by LC-MS/MS analysis. A list of potential light-induced modifications, with their respective mass changes, was obtained. These modifications are primarily on methionine, tryptophan, histidine, cysteine, tyrosine and phenylalanine residues. Many of these modifications have not been previously reported on therapeutic proteins. Our findings therefore provide a database of potential light-induced modifications that would enable the routine characterization of light-induced modifications on therapeutic proteins.


Assuntos
Metionina , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Histidina , Metionina/química , Mapeamento de Peptídeos/métodos
3.
PDA J Pharm Sci Technol ; 74(1): 2-14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31209168

RESUMO

Urea is used in biopharmaceutical manufacturing processes for the purification of therapeutic proteins, for cleaning columns, and for refolding proteins after purification. The urea used for such purposes is typically USP grade material obtained from commercial sources and further characterization is required prior to use, such as determination of purity and identity. For this purpose, a robust analytical method is needed that can characterize the known organic impurities of urea. However, the existing methods show high assay variability and are not able to resolve all known organic impurities as desired for accurate quantification. In the present manuscript we developed a new high-performance liquid chromatography method with UV detection for the separation of urea and its impurities (biuret, cyanuric acid, and triuret). The method performance characteristics evaluated for urea and biuret were specificity, linearity, accuracy, identity, precision, and robustness and the newly developed method met all predefined performance acceptance criteria.


Assuntos
Contaminação de Medicamentos/prevenção & controle , Raios Ultravioleta , Ureia/análise , Ureia/normas , Cromatografia Líquida de Alta Pressão/normas , Cromatografia Líquida de Alta Pressão/tendências , Reprodutibilidade dos Testes
4.
MAbs ; 10(4): 572-582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29469657

RESUMO

Disulfide linkage is critical to protein folding and structural stability. The location of disulfide linkages for antibodies is routinely discovered by comparing the chromatograms of the reduced and non-reduced peptide mapping with location identification confirmed by collision-induced dissociation (CID) mass spectrometry (MS)/MS. However, CID product spectra of disulfide-linked peptides can be difficult to interpret, and provide limited information on the backbone region within the disulfide loop. Here, we applied an electron-transfer dissociation (ETD)/CID combined fragmentation method that identifies the disulfide linkage without intensive LC comparison, and yet maps the disulfide location accurately. The native protein samples were digested using trypsin for proteolysis. The method uses RapiGest SF Surfactant and obviates the need for reduction/alkylation and extensive sample manipulation. An aliquot of the digest was loaded onto a C4 analytical column. Peptides were gradient-eluted and analyzed using a Thermo Scientific LTQ Orbitrap Elite mass spectrometer for the ETD-triggered CID MS 3 experiment. Survey MS scans were followed by data-dependent scans consisting of ETD MS2 scans on the most intense ion in the survey scan, followed by 5 MS3 CID scans on the 5 most intense ions in the ETD MS2 scan. We were able to identify the disulfide-mediated structural variants A and A/B forms and their corresponding disulfide linkages in an immunoglobulin G2 monoclonal antibody with λ light chain (IgG2λ), where the location of cysteine linkages were unambiguously determined.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Humanos , Imunoglobulina G/química , Isoformas de Proteínas/química
5.
Biotechnol Prog ; 34(3): 738-745, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341500

RESUMO

Monoclonal antibodies (mAbs) are composed of two heavy chain (HC) and two light chain (LC) polypeptides. The proper folding and assembly of HC and LC is critical for antibody production. Current dogma indicates that the free HCs are retained in the endoplasmic reticulum (ER) unless assembled with LCs into antibodies, while the LCs on the other hand can be secreted as free monomer or dimer molecules. In this study, high levels of extracellular HC homodimers (7%-45%) were observed in the cell culture media during cell line development for mAb1. Excellent correlation (R2  > 0.9) between the level of free HC homodimers and the percentage of high molecular weight species indicates that the free HC homodimers might be causative of unwanted aggregation. Due to the different surface charge of HC homodimer and fully assembled antibodies, the unwanted extracellular HC homodimers were successfully removed by downstream processing, through a cation exchange chromatography step. Reduced capillary electrophoresis-sodium dodecyl sulfate (rCE-SDS) analysis of the cell culture media from different MTX-amplified pools indicated that insufficient expression of LC is one potential root cause for the high level of free HC homodimers. The level of free HC homodimers decreased significantly (3%-25%) after retransfecting the MTX amplified pools with additional LC gene. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:738-745, 2018.


Assuntos
Anticorpos Monoclonais/química , Cadeias Pesadas de Imunoglobulinas/química , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Células Cultivadas , Cricetulus , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia
6.
Pharm Res ; 34(12): 2817-2828, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110285

RESUMO

PURPOSE: To physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO). METHODS: Two monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins. RESULTS: The particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified. CONCLUSION: The extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cobre/química , Imunoglobulina G/química , Agregados Proteicos , Rituximab/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Catálise , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Soluções
7.
Biochemistry ; 51(3): 795-806, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22242921

RESUMO

The in vitro binding stoichiometry of denosumab, an IgG2 fully human monoclonal therapeutic antibody, to RANK ligand was determined by multiple complementary size separation techniques with mass measuring detectors, including two solution-based techniques (size-exclusion chromatography with static light scattering detection and sedimentation velocity analytical ultracentrifugation) and a gas-phase analysis by electrospray ionization time-of-flight mass spectrometry from aqueous nondenaturing solutions. The stoichiometry was determined under defined conditions ranging from small excess RANK ligand to large excess denosumab (up to 40:1). High concentrations of denosumab relative to RANK ligand were studied because of their physiological relevance; a large excess of denosumab is anticipated in circulation for extended periods relative to much lower concentrations of free soluble RANKL. The studies revealed that an assembly including 3 denosumab antibody molecules bound to 2 RANKL trimers (3D2R) is the most stable complex in DPBS at 37 °C. This differs from the 1:1 binding stoichiometry reported for RANKL and osteoprotegerin (OPG), a soluble homodimeric decoy receptor which binds RANKL with high affinity. Denosumab and RANKL also formed smaller assemblies including 1 denosumab and 2 RANKL trimer molecules (1D2R) under conditions of excess RANKL, 3 denosumab molecules and 1 RANKL trimer (3D1R) under conditions of excess denosumab, and larger assemblies, but these intermediate species were only present at lower temperatures (4 °C), shortly after mixing denosumab and RANKL, and converted over time to the more stable 3D2R assembly.


Assuntos
Anticorpos Monoclonais/química , Mapeamento de Interação de Proteínas , Ligante RANK/antagonistas & inibidores , Ligante RANK/química , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Soluções Tampão , Células CHO , Cricetinae , Denosumab , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Estabilidade Proteica , Ligante RANK/sangue , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Solubilidade
8.
Biochemistry ; 48(17): 3755-66, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19254029

RESUMO

Human IgG2 exists as a mixture of disulfide-linked structural isoforms that can show different activities. To probe the contribution of specific cysteine residues to the formation of structural isoforms, we characterized a series of Cys-->Ser mutant IgG2 recombinant monoclonal antibodies, focused on the first C(H)1 cysteine and the first two hinge cysteines. These residues participate in the formation of structural isoforms that have been noted by nonreduced capillary sodium dodecyl sulfate polyacrylamide gel electrophoresis, reversed-phase high-performance liquid chromatography, and cation exchange chromatography. We show that single Cys-->Ser mutants can greatly reduce heterogeneous disulfide bonding in human IgG2 and maintain in vitro activity. The data demonstrate the feasibility of applying site-directed mutagenesis to reduce disulfide bond heterogeneity in human IgG2 while preserving the activity of this therapeutically important class of human antibodies.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Dissulfetos/química , Imunoglobulina G/química , Imunoglobulina G/genética , Mutagênese Sítio-Dirigida , Substituição de Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoglobulina G/metabolismo , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
J Biol Chem ; 283(23): 16194-205, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18339624

RESUMO

In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.


Assuntos
Dissulfetos/química , Imunoglobulina G/química , Cadeias kappa de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/química , Humanos , Imunoglobulina G/genética , Cadeias kappa de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
J Biol Chem ; 283(23): 16206-15, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18339626

RESUMO

In the accompanying report ( Wypych, J., Li, M., Guo, A., Zhang, Z., Martinez, T., Allen, M. J., Fodor, S., Kelner, D. N., Flynn, G. C., Liu, Y. D., Bondarenko, P. V., Ricci, M. S., Dillon, T. M., and Balland, A. (2008) J. Biol. Chem. 283, 16194-16205 ), we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by the disulfide connectivity at the hinge region. In this report, we studied the structural and functional properties of the IgG2 disulfide isoforms and compared them to IgG1. Human monoclonal IgG1 and IgG2 antibodies were designed with identical antigen binding regions, specific to interleukin-1 cell surface receptor type 1. In vitro biological activity measurements showed an increased activity of the IgG1 relative to the IgG2 in blocking interleukin-1beta ligand from binding to the receptor, suggesting that some of the IgG2 isoforms had lower activity. Under reduction-oxidation conditions, the IgG2 disulfide isoforms converted to IgG2-A when 1 m guanidine was used, whereas IgG2-B was enriched in the absence of guanidine. The relative potency of the antibodies in cell-based assays was: IgG1 > IgG2-A > IgG2 >> IgG2-B. This difference correlated with an increased hydrodynamic radius of IgG2-A relative to IgG2-B, as shown by biophysical characterization. The enrichment of disulfide isoforms and activity studies were extended to additional IgG2 monoclonal antibodies with various antigen targets. All IgG2 antibodies displayed the same disulfide conversion, but only a subset showed activity differences between IgG2-A and IgG2-B. Additionally, the distribution of isoforms was influenced by the light chain type, with IgG2lambda composed mostly of IgG2-A. Based on crystal structure analysis, we propose that IgG2 disulfide exchange is caused by the close proximity of several cysteine residues at the hinge and the reactivity of tandem cysteines within the hinge. Furthermore, the IgG2 isoforms were shown to interconvert in whole blood or a "blood-like" environment, thereby suggesting that the in vivo activity of human IgG2 may be dependent on the distribution of isoforms.


Assuntos
Dissulfetos/química , Imunoglobulina G/química , Cadeias lambda de Imunoglobulina/química , Cristalografia por Raios X , Humanos , Oxirredução , Isoformas de Proteínas/química , Estrutura Quaternária de Proteína/fisiologia , Relação Estrutura-Atividade
11.
Neurobiol Dis ; 11(1): 111-22, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12460551

RESUMO

Amino-terminal fragments of huntingtin, which contain the expanded polyglutamine repeat, have been proposed to contribute to the pathology of Huntington's disease (HD). Data supporting this claim have been generated from patients with HD in which truncated amino-terminal fragments forming intranuclear inclusions have been observed, and from animal and cell-based models of HD where it has been demonstrated that truncated polyglutamine-containing fragments of htt are more toxic than full-length huntingtin. We report here the identification of a region within huntingtin, spanning from amino acids 63 to 111, that is cleaved in cultured cells to generate a fragment of similar size to those observed in patients with HD. Importantly, proteolytic cleavage within this region appears dependent upon the length of the polyglutamine repeat within huntingtin, with pathological polyglutamine repeat-containing huntingtin being more efficiently cleaved than huntingtin containing polyglutamine repeats of nonpathological size.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Sequências Repetitivas de Ácido Nucleico , Sequência de Aminoácidos , Animais , Calpaína/metabolismo , Linhagem Celular , Corpo Estriado/citologia , Mapeamento de Epitopos , Deleção de Genes , Proteína Huntingtina , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA