Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 128: 111453, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241841

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses and promotes cell death and the inhibition of osteogenic differentiation. MicroRNA (miRNA) plays a crucial role in the infected bone diseases, however, the biological role of miRNAs in inflammation-induced impaired osteogenic differentiation remains unclear. This study aimed to explore the role of miRNA-18a-5p (miR-18a) in regulating PANoptosis and osteogenic differentiation in an inflammatory environment via hypoxia-inducible factor-1α (HIF1-α). METHODS: The expression of miR-18a in MC3T3-E1 cells was analyzed using quantitative reverse transcription-polymerase chain reaction in an inflammatory environment induced by TNF-α. The expression of HIF1-α and NLRP3 in LV-miR-18a or sh-miR-18a cells was analyzed using western blotting. Fluorescence imaging for cell death, flow cytometry, and alkaline phosphatase activity analysis were used to analyze the role of miR-18a in TNF-α-induced PANoptosis and the inhibition of osteogenic differentiation. An animal model of infectious bone defect was established to validate the regulatory role of miR-18a in an inflammatory environment. RESULTS: The expression of miRNA-18a in the MC3T3-E1 cell line was significantly lower under TNF-α stimulation than in the normal environment. miR-18a significantly inhibited the expression of HIF1-α and NLRP3, and inhibition of HIF1-α expression further inhibited NLRP3 expression. Furthermore, inhibition of miR-18a expression promoted the TNF-α-induced PANoptosis and inhibition of osteogenic differentiation, whereas miR-18a overexpression and the inhibition of both HIF1-α and NLRP3 reduced the effects of TNF-α. These findings are consistent with those of the animal experiments. CONCLUSION: miRNA-18a negatively affects HIF1-α/NLRP3 expression, inhibits inflammation-induced PANoptosis, and impairs osteogenic differentiation. Thus, it is a potential therapeutic candidate for developing anti-inflammatory strategies for infected bone diseases.


Assuntos
Doenças Ósseas , MicroRNAs , Animais , Apoptose , Doenças Ósseas/metabolismo , Diferenciação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , Necroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/metabolismo , Osteogênese , Piroptose , Fator de Necrose Tumoral alfa/metabolismo , Camundongos
2.
J Inflamm Res ; 15: 2745-2759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509324

RESUMO

Introduction: Osteomyelitis is characterized by intensive inflammatory bone disease and remains a clinical challenge in orthopedic surgery, despite the advances made in medical and surgical therapies. Staphylococcus aureusis a major causative agent of osteomyelitis, causing the progressive inflammatory destruction of bone. Prophylaxis of osteomyelitis during orthopedic surgery is necessary. NFκB essential modulator-binding domain (NBD) peptides are cell-permeable peptide inhibitors of the IκB-kinase complex. The prophylactic effect of NBD peptides in relieving inflammation and inhibiting bone defects in osteomyelitis is still under investigation. Our purpose was to determine the preventive effect of NBD peptides in S. aureus infection-induced bone defects in osteomyelitis. Methods: An S. aureus osteomyelitis rabbit model was used in this study. The rabbits were divided into four groups: NBD, cefazolin, control, and PBS. Clinical and laboratory indicators of erythrocyte-sedimentation rate, CRP, and TNFα levels were assessed to monitor systemic reactions. The efficacy of NBD peptides in S. aureus-induced osteomyelitis was evaluated by radiological, histological, and microbiological examinations, immunohistochemistry, immunofluorescence, and micro-CT scans. Results: In general, NBD peptides effectively reduced clinical signs in rabbits when compared with the control group. Radiography indicated that there was more severe osteomyelitis in the bacterium-infection control group. There was no significance between cefazolin- and NBD-group average scores. The histological results of the lesion slices further confirmed different severity among the groups. Additionally, significant pathological differences were found between the cefazolin and NBD groups, and the PBS group showed no obvious pathological changes. Conclusion: Prophylactic administration of NBD peptides to bone-defect areas inhibited bacterial spread and promoted bone regeneration, making NBD peptides a possible treatment option for prophylaxis in bone infections.

3.
Biomed Res Int ; 2021: 3664564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853789

RESUMO

Tumor necrosis factor-α is a common cytokine that increases in inflammatory processes, slows the differentiation of bone formation, and induces osteodystrophy in the long-term inflammatory microenvironment. Our previous study confirmed that the Elongation protein 2 (ELP2) plays a significant role in osteogenesis and osteogenic differentiation, which is considered a drug discovery target in diseases related to bone formation and differentiation. In this study, we applied an in silico virtual screening method to select molecules that bind to the ELP2 protein from a chemical drug molecule library and obtained 95 candidates. Then, we included 11 candidates by observing the docking patterns and the noncovalent bonds. The binding affinity of the ELP2 protein with the candidate compounds was examined by SPR analysis, and 5 out of 11 compounds performed good binding affinity to the mouse ELP2 protein. After in vitro cell differentiation assay, candidates 2# and 5# were shown to reduce differentiation inhibition after tumor necrosis factor-α stimulation, allowing further optimization and development for potential clinical treatment of inflammation-mediated orthopedic diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Marcadores Genéticos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/química , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Ligação Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA