Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(18): 3703-3708, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668695

RESUMO

An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.

2.
Org Lett ; 25(28): 5279-5284, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37431881

RESUMO

The synthesis of tertiary phosphines(III) has been a long-standing challenge in synthetic chemistry because of inevitable issues including harsh conditions, sensitive organometallic reagents, and prefunctionalized substrates in traditional synthesis. Herein, we report a strategically novel C(sp3)-H bond phosphorylation that enables the assembly of structurally diverse tertiary phosphines(III) from industrial phosphine(III) sources under mild photocatalytic conditions. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with the hydrogen atom-transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons. Strikingly, this catalytic system can be successfully applied for the polymerization of electron-deficient alkenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA