Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 18(5): 101378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38992465

RESUMO

BACKGROUND & AIMS: Addition of sialic acids (sialylation) to glycoconjugates is a common capping step of glycosylation. Our study aims to determine the roles of the overall sialylation in intestinal mucosal homeostasis. METHODS: Mice with constitutive deletion of intestinal epithelial sialylation (IEC Slc35a1-/- mice) and mice with inducible deletion of sialylation in intestinal epithelium (TM-IEC Slc35a1-/- mice) were generated, which were used to determine the roles of overall sialylation in intestinal mucosal homeostasis by ex vivo and mutiomics studies. RESULTS: IEC Slc35a1-/- mice developed mild spontaneous microbiota-dependent colitis. Additionally, 30% of IEC Slc35a1-/- mice had spontaneous tumors in the rectum greater than the age of 12 months. TM-IEC Slc35a1-/- mice were highly susceptible to acute inflammation induced by 1% dextran sulfate sodium versus control animals. Loss of total sialylation was associated with reduced mucus thickness on fecal sections and within colon tissues. TM-IEC Slc35a1-/- mice showed altered microbiota with an increase in Clostridium disporicum, which is associated a global reduction in the abundance of at least 10 unique taxa; however, metabolomic analysis did not show any significant differences in short-chain fatty acid levels. Treatment with 5-fluorouracil led to more severe small intestine mucositis in the IEC Slc35a1-/- mice versus wild-type littermates, which was associated with reduced Lgr5+ cell representation in small intestinal crypts in IEC Slc35a1-/-;Lgr5-GFP mice. CONCLUSIONS: Loss of overall sialylation impairs mucus stability and the stem cell niche leading to microbiota-dependent spontaneous colitis and tumorigenesis.


Assuntos
Colite , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Masculino , Camundongos , Doença Aguda , Doença Crônica , Colite/patologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Camundongos Knockout , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo
2.
Blood ; 144(3): 247-248, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023873
3.
Arterioscler Thromb Vasc Biol ; 44(8): 1799-1812, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38899470

RESUMO

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.


Assuntos
Aterosclerose , Adesão Celular , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides , Talina , Animais , Talina/metabolismo , Talina/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Macrófagos/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/imunologia , Doenças da Aorta/prevenção & controle , Masculino , Antígenos CD18/metabolismo , Antígenos CD18/genética , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/genética , Monócitos/metabolismo , Monócitos/imunologia , Placa Aterosclerótica , Camundongos , Células Cultivadas , Aorta/patologia , Aorta/metabolismo , Transdução de Sinais
4.
Blood ; 143(13): 1293-1309, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38142410

RESUMO

ABSTRACT: Although it is caused by a single-nucleotide mutation in the ß-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Fator de von Willebrand/genética , Hibridização in Situ Fluorescente , Anemia Falciforme/patologia , Macrófagos/patologia , Proteína ADAMTS13/genética
5.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
6.
Cell Death Dis ; 14(8): 547, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612278

RESUMO

Although most cell membrane proteins are modified by glycosylation, our understanding of the role and actions of protein glycosylation is still very limited. ß1,3galactosyltransferase (C1GalT1) is a key glycosyltransferase that controls the biosynthesis of the Core 1 structure of O-linked mucin type glycans and is overexpressed by many common types of epithelial cancers. This study reports that suppression of C1GalT1 expression in human colon cancer cells caused substantial changes of protein glycosylation of cell membrane proteins, many of which were ligands of the galactoside-binding galectin-3 and the macrophage galactose-type lectin (MGL). This led to significant reduction of cancer cell proliferation, adhesion, migration and the ability of tumour cells to form colonies. Crucially, C1GalT1 suppression significantly reduced galectin-3-mediated tumour cell-cell interaction and galectin-3-promoted tumour cell activities. In the meantime, C1GalT1 suppression substantially increased MGL-mediated macrophage-tumour cell interaction and macrophage-tumour cell phagocytosis and cytokine secretion. C1GalT1-expressing cancer cells implanted in chick embryos resulted in the formation of significantly bigger tumours than C1GalT1-suppressed cells and the presence of galectin-3 increased tumour growth of C1GalT1-expressing but not C1GalT1-suppressed cells. More MGL-expressing macrophages and dendritic cells were seen to be attracted to the tumour microenvironment in ME C1galt1-/-/Erb mice than in C1galt1f/f /Erb mice. These results indicate that expression of C1GalT1 by tumour cells reciprocally controls tumour cell-cell and tumour-macrophage interactions mediated by galectin-3 and MGL with double impact on cancer development and progression. C1GalT1 overexpression in epithelial cancers therefore may represent a fundamental mechanism in cancer promotion and in reduction of immune response/surveillance in cancer progression.


Assuntos
Neoplasias do Colo , Galectina 3 , Embrião de Galinha , Humanos , Animais , Camundongos , Galectina 3/genética , Galactose , Neoplasias do Colo/genética , Glicosilação , Macrófagos , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 119(34): e2207592119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969769

RESUMO

Vaso-occlusive episode (VOE) is a common and critical complication of sickle cell disease (SCD). Its pathogenesis is incompletely understood. von Willebrand factor (VWF), a multimeric plasma hemostatic protein synthesized and secreted by endothelial cells and platelets, is increased during a VOE. However, whether and how VWF contributes to the pathogenesis of VOE is not fully understood. In this study, we found increased VWF levels during tumor necrosis factor (TNF)-induced VOE in a humanized mouse model of SCD. Deletion of endothelial VWF decreased hemolysis, vascular occlusion, and organ damage caused by TNF-induced VOE in SCD mice. Moreover, administering ADAMTS13, the VWF-cleaving plasma protease, reduced plasma VWF levels, decreased inflammation and vaso-occlusion, and alleviated organ damage during VOE. These data suggest that promoting VWF cleavage via ADAMTS13 may be an effective treatment for reducing hemolysis, inflammation, and vaso-occlusion during VOE.


Assuntos
Anemia Falciforme , Doenças Vasculares , Fator de von Willebrand , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/farmacologia , Proteína ADAMTS13/uso terapêutico , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Deleção de Genes , Hemólise/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(1): 323-326, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35123648

RESUMO

Tubulin affects platelets count through the control of mitosis and the formation of pro-platelets during the maturation of megakaryoblast to platelets. Tubulin is involved in maintaining the integrity of platelet skeleton, and also participates in the change of platelet morphology during platelet activation. Some new anti-tumor drugs targeting cell mitosis are trying to reduce the effect on tubulin in order to reduce the side effect of drugs on platelet formation. In some patients with thrombocytopenia, the variation and polymorphism of the tubulin gene affect the structure of microtubule multimers, which leads to the decrease of platelet formation. This review summarized the latest progresses of tubulin in the regulation of megakaryopoiesis and thrombopoiesis.


Assuntos
Trombopoese , Tubulina (Proteína) , Plaquetas , Humanos , Megacariócitos , Contagem de Plaquetas
9.
Artigo em Chinês | MEDLINE | ID: mdl-34886634

RESUMO

Tinnitus is a kind of phantom hearing. The quality of life of millions of people around the world is affected by it. There is no data to prove that drugs can be cured. There is no final conclusion on the clinical treatment of tinnitus. This article focuses on the treatment of tinnitus: Drug Treatment, Traditional Chinese Medicine, Surgical Treatment, Hyperbaric Oxygen Therapy, Acoustic Resonance Therapy, Transcranial Magnetic Stimulation Therapy, Cognitive Behavioral Therapy(CBT), Tinnitus Retraining Therapy (TRT), Multiple Compound Sound Therapy, etc. Provide more personalized tinnitus treatment programs for clinical patients.


Assuntos
Zumbido , Estimulação Acústica , Audição , Humanos , Qualidade de Vida , Zumbido/terapia , Resultado do Tratamento
10.
Theranostics ; 11(20): 9791-9804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815786

RESUMO

Rationale: Platelets play an essential role in atherosclerosis, but the underlying mechanisms remain to be addressed. This study is to investigate the role of platelets in d-flow induced vascular inflammation and the underlying mechanism. Methods: We established a disturbed blood flow (d-flow) model by partial carotid ligation (PCL) surgery using atherosclerosis-susceptible mice and wild-type mice to observe the d-flow induced platelet accumulation in the subendothelium or in the plaque by immunostaining or transmission electron microscopy. The mechanism of platelet subendothelial accumulation was further explored by specific gene knockout mice. Results: We observed presence of platelets in atherosclerotic plaques either in the atheroprone area of aortic arch or in carotid artery with d-flow using Ldlr-/- or ApoE-/- mice on high fat diet. Immunostaining showed the subendothelial accumulation of circulating platelets by d-flow in vivo. Transmission electron microscopy demonstrated the accumulation of platelets associated with monocytes in the subendothelial spaces. The subendothelial accumulation of platelet-monocyte/macrophage aggregates reached peak values at 2 days after PCL. In examining the molecules that may mediate the platelet entry, we found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) reduced the subendothelial accumulation of platelets and monocytes/macrophages by d-flow, and ameliorated plaque formation in Ldlr-/- mice on high fat diet. Supportively, CLEC-2 deficient platelets diminished their promoting effect on the migration of mouse monocyte/macrophage cell line RAW264.7. Moreover, monocyte podoplanin (PDPN), the only ligand of CLEC-2, was upregulated by d-flow, and the myeloid-specific PDPN deletion mitigated the subendothelial accumulation of platelets and monocytes/macrophages. Conclusions: Our results reveal a new CLEC-2-dependent platelet subendothelial accumulation in response to d-flow to regulate vascular inflammation.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Circulação Sanguínea , Endotélio , Feminino , Lectinas Tipo C/genética , Leucócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo
11.
Front Oncol ; 11: 668617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211844

RESUMO

Mantle cell lymphoma (MCL) is an aggressive form of non-Hodgkin's B-cell lymphoma with poor prognosis. Despite recent advances, resistance to therapy and relapse remain significant clinical problems. G-protein-coupled estrogen receptor (GPER)-mediated estrogenic rapid signaling is implicated in the development of many cancers. However, its role in MCL is unknown. Here we report that GPER activation with selective agonist G-1 induced cell cycle arrest, DNA damage, mitochondria membrane potential abnormality, and eventually apoptosis of MCL cell lines. We found that G-1 induced DNA damage and apoptosis of MCL cells by promoting the expression of nicotinamide adenine dinucleotide phosphate oxidase and the generation of reactive oxygen species. In addition, G-1 inhibited MCL cell proliferation by inactivation of NF-κB signaling and exhibited anti-tumor functions in MCL xenografted mice. Most significantly, G-1 showed synergistic effect with ibrutinib making it a potential candidate for chemotherapy-free therapies against MCL.

12.
Biomed Res Int ; 2021: 8844119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506040

RESUMO

Otitis media (OM) is a common inflammatory disease of the middle ear cavity and mainly occurs in children. As a critical regulator of inflammation response, the nuclear factor kappa B (NF-κB) pathway has been found to play an essential role in the pathogenesis of various human diseases. The aim of this study was to explore the potential mechanism under the inflammatory response of human middle ear epithelial cells (HMEECs). We established in vitro models of OM by treating HMEECs with lipopolysaccharide (LPS) or interleukin 17A (IL-17A). Enzyme-linked immunosorbent assay and western blot analysis were used to measure the inflammatory response of HMEECs under LPS or IL-17A stimulation. The results revealed that the concentrations of proinflammatory cytokines (p < 0.001) and protein levels of mucin (MUC) (for MUC5AC, p = 0.002, p = 0.004; for MUC8, p = 0.004, p < 0.001) were significantly elevated by LPS or IL-17A stimulation in HMEECs. Moreover, we found that LPS or IL-17A treatment promoted the phosphorylation of IκBα (for p-IκBα, p = 0.018, p = 0.002; for IκBα, p = 0.238, p = 0.057) and the translocation of p65 from cytoplasm to nucleus in HMEECs (for nucleus p65, p = 0.01; for cytoplasm p65, p < 0.001). In addition, RT-qPCR analysis revealed that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was verified to be upregulated in LPS- or IL-17A-stimulated HMEECs (p < 0.001). Western blot analysis and immunofluorescence staining assay revealed that that MALAT1 knockdown significantly suppressed the activation of the NF-κB pathway by reducing phosphorylated IκBα levels and inhibiting the nuclear translocation of p65 (p < 0.001) in LPS- or IL-17A-stimulated HMEECs (for p-IκBα, p < 0.001; for IκBα, p = 0.242, p = 0.647). Silence of MALAT1 decreased the proinflammatory cytokine production and MUC protein levels (p < 0.001). Furthermore, rescue assays revealed that the increase of proinflammatory cytokine production (for TNF-α, p = 0.002, p = 0.015; for IL-1ß, p < 0.001, p = 0.006; for IL-6, p = 0.002, p < 0.001) and MUC protein levels (for MUC5AC, p = 0.001, p < 0.001; for MUC8, p < 0.001, p = 0.001) induced by MALAT1 overexpression was neutralized by 4-N-[2-(4-phenoxyphenyl) ethyl] quinazoline-4, 6-diamine (QNZ) treatment in LPS- or IL-17A-stimulated HMEECs. In conclusion, MALAT1 promotes inflammatory response in LPS- or IL-17A- stimulated HMEECs via the NF-κB signaling pathway, which may provide a potential novel insight for the treatment of OM.


Assuntos
Orelha Média/imunologia , Células Epiteliais/imunologia , Inflamação/prevenção & controle , Interleucina-17/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , Células Cultivadas , Orelha Média/efeitos dos fármacos , Orelha Média/metabolismo , Orelha Média/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , NF-kappa B/genética , RNA Longo não Codificante/genética , Transdução de Sinais
13.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960814

RESUMO

Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(7): 609-615, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32727645

RESUMO

Objective To investigate the effect of circular RNA homeodomain-interacting protein kinase 3 (circHIPK3) on the proliferation and metastasis of glioma cells via sponging miR-124-3p. Methods T98G cells were transfected with circHIPK3 short hairpin RNA (sh-circHIPK3), pcDNA3.1-circHIPK3, miR-124-3p mimics or pcDNA3.1-WEE1 using LipofectamineTM 3000 reagent following the manufacturer's instructions. Real-time quantitative PCR was performed to evaluate the expression of circHIPK3 and miR-124-3p in glioma tissues and cell lines. CCK-8 assay was employed to assess the proliferation of T98G cells. TranswellTM assay was applied to validate the invasion of T98G cells. The targeting relationship among miR-124-3p, circHIPK3 and serine/threonine kinase WEE1 were verified by dual-luciferase reporter gene assay. The expression of WEE1 and epithelial mesenchymal transition (EMT)-related factors (E-cadherin, N-cadherin and vimentin) were measured by Western blot analysis. In addition, after the competitive binding of circHIPK3 and WEE1 to miR-124-3p, the proliferation of T98G cells was detected by CCK-8 assay; the invasion of T98G cells was evaluated by TranswellTM assay. Results The circHIPK3 was upregulated in glioma tissues and cell lines. Knockdown of circHIPK3 repressed the proliferation, invasion and EMT of T98G cells. Dual-luciferase reporter gene assay confirmed that miR-124-3p was the target gene of circHIPK3, while WEE1 was the target gene of miR-124-3p. The miR-124-3p was over-expressed simultaneously with circHIPK3 or WEE1. Co-transfected sh-circHIPK3 and pcDNA3.1-WEE1 restored the inhibitory effect of miR-124-3p overexpression on the proliferation, invasion and EMT of T98G cells. Conclusion The circRNA-HIPK3 and WEE1 can promote the proliferation, invasion and EMT of glioma cells by sponging miR-124-3p.


Assuntos
Glioma , RNA Circular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioma/genética , Humanos , MicroRNAs
15.
J Exp Med ; 217(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645367

RESUMO

Core 1-derived mucin-type O-glycans (O-glycans) are a major component of gastric mucus with an unclear role. To address this, we generated mice lacking gastric epithelial O-glycans (GEC C1galt1-/-). GEC C1galt1-/- mice exhibited spontaneous gastritis that progressed to adenocarcinoma with ∼80% penetrance by 1 yr. GEC C1galt1-/- gastric epithelium exhibited defective expression of a major mucus forming O-glycoprotein Muc5AC relative to WT controls, which was associated with impaired gastric acid homeostasis. Inflammation and tumorigenesis in GEC C1galt1-/- stomach were concurrent with activation of caspases 1 and 11 (Casp1/11)-dependent inflammasome. GEC C1galt1-/- mice genetically lacking Casp1/11 had reduced gastritis and gastric cancer progression. Notably, expression of Tn antigen, a truncated form of O-glycan, and CASP1 activation was associated with tumor progression in gastric cancer patients. These results reveal a critical role of O-glycosylation in gastric homeostasis and the protection of the gastric mucosa from Casp1-mediated gastric inflammation and cancer.


Assuntos
Gastrite/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Carcinogênese/metabolismo , Caspase 1/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Glicosilação , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Muco/metabolismo , Neoplasias/metabolismo
16.
BMC Cancer ; 19(1): 599, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208371

RESUMO

BACKGROUND: Podoplanin (PDPN), a transmembrane O-glycoprotein, is up-regulated in many tumors and is involved in tumor metastasis and malignant progression. In previous studies, we generated a functional blocking monoclonal antibody (mAb, SZ168) against the extracellular domain of human PDPN. This study is aimed to investigate whether blocking PDPN by SZ168 inhibits tumor growth and metastasis. METHODS: Malignant melanoma xenograft model by inoculating subcutaneously human malignant melanoma cell line C8161 into the back of BALB/c nude mice was used. Endogenous PDPN expression in C8161 cells and nasopharyngeal cancer cell line CNE-2 was detected using western blot and flow cytometry. RESULTS: SZ168 significantly inhibited C8161 or CNE-2 cell-induced platelet aggregation in a dose-dependent manner with a maximal inhibition of 73.9 ± 3.0% in C8161 cells or 77.1 ± 2.7% in CNE-2 cells. Moreover, SZ168 inhibited the growth and pulmonary metastasis of C8161cells in vivo. The number of lung metastatic foci in the SZ168-treated group was significantly decreased compared with that in the control mouse IgG group (1.61 ± 0.44 vs.3.83 ± 0.60, P < 0.01). Subcutaneous tumor volume, weight, and incidence were also significantly reduced in the SZ168-treated group compared to the control group (P < 0.05). Additionally, SZ168 recognized PDPN in immunohistochemical analyses of tumor tissue sections. CONCLUSIONS: SZ168 blocks growth and pulmonary metastasis of human malignant melanoma by inhibiting the interaction between tumor PDPN and platelet CLEC-2 and therefore is a promising antibody for therapeutic development against malignant melanoma.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Death Differ ; 26(9): 1656-1669, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30478383

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by defective intestinal barrier integrity toward the microbiota and epithelial damage. Double cortin-like kinase 1 (Dclk1), a marker of intestinal tuft cells, can regulate tissue regenerative responses, but its role in epithelial repair during bacterial-dependent chronic colitis is unclear. We addressed this question using our recently developed mouse model of spontaneous microbiota-dependent colitis induced by mucin-type O-glycan deficiency (DKO), which recapitulates most features of human UC. We generated DKO mice lacking intestinal epithelial Dclk1 (DKO;Dclk1ΔIEC) and analyzed colitis onset and severity using clinical and histologic indices, immune responses by qPCR and immunostaining, and epithelial responses using proliferation markers and organoid culture. We found 3-4-week-old DKO;Dclk1ΔIEC mice developed worsened spontaneous colitis characterized by reduced body weight, loose stool, severe colon thickening, epithelial lesions, and inflammatory cell infiltrates compared with DKO mice. The primary defect was an impaired epithelial proliferative response during inflammation. Dclk1 deficiency also reduced inflammation-induced proliferation and growth of colon organoids ex vivo. Mechanistically, Dclk1 expression was important for inflammation-induced Cox2 expression and prostaglandin E2 (PGE2) production in vivo, and PGE2 rescued proliferative defects in Dclk1-deficient colonic organoids. Although tuft cells were expanded in both DKO and DKO;Dclk1ΔIEC relative to WT mice, loss of Dclk1 was associated with reduced tuft cell activation (i.e., proliferation) during inflammation. Similar results were found in DKO vs. DKO;Dclk1ΔIEC mice at 3-6 months of age. Our results support that tuft cells, via Dclk1, are important responders to bacterial-induced colitis by enhancing epithelial repair responses, which in turn limits bacterial infiltration into the mucosa.


Assuntos
Apoptose/genética , Colite/genética , Inflamação/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proliferação de Células/genética , Doença Crônica/epidemiologia , Doença Crônica/prevenção & controle , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
18.
Gastroenterology ; 155(5): 1608-1624, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30086262

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS: We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS: KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS: In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.


Assuntos
Adenocarcinoma/etiologia , Galactosiltransferases/fisiologia , Neoplasias Pancreáticas/etiologia , Adenocarcinoma/secundário , Animais , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático , Proliferação de Células , Galactosiltransferases/genética , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia
19.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046013

RESUMO

Site-1 protease (S1P), encoded by MBTPS1, is a serine protease in the Golgi. S1P regulates lipogenesis, endoplasmic reticulum (ER) function, and lysosome biogenesis in mice and in cultured cells. However, how S1P differentially regulates these diverse functions in humans has been unclear. In addition, no human disease with S1P deficiency has been identified. Here, we report a pediatric patient with an amorphic and a severely hypomorphic mutation in MBTPS1. The unique combination of these mutations results in a frequency of functional MBTPS1 transcripts of approximately 1%, a finding that is associated with skeletal dysplasia and elevated blood lysosomal enzymes. We found that the residually expressed S1P is sufficient for lipid homeostasis but not for ER and lysosomal functions, especially in chondrocytes. The defective S1P function specifically impairs activation of the ER stress transducer BBF2H7, leading to ER retention of collagen in chondrocytes. S1P deficiency also causes abnormal secretion of lysosomal enzymes due to partial impairment of mannose-6-phosphate-dependent delivery to lysosomes. Collectively, these abnormalities lead to apoptosis of chondrocytes and lysosomal enzyme-mediated degradation of the bone matrix. Correction of an MBTPS1 variant or reduction of ER stress mitigated collagen-trafficking defects. These results define a new congenital human skeletal disorder and, more importantly, reveal that S1P is particularly required for skeletal development in humans. Our findings may also lead to new therapies for other genetic skeletal diseases, as ER dysfunction is common in these disorders.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Transporte Proteico , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças do Desenvolvimento Ósseo/fisiopatologia , Técnicas de Cultura de Células , Pré-Escolar , Condrócitos/metabolismo , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas , Complexo de Golgi/metabolismo , Homeostase , Humanos , Lipogênese , Lisossomos/metabolismo , Manosefosfatos , Mutação
20.
Cancer Sci ; 109(2): 403-411, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266546

RESUMO

Podoplanin (PDPN) is expressed on many tumors and is involved in tumor metastasis. The objective of the present study was to develop an ELISA for determining soluble PDPN (sPDPN) levels as a potential novel tumor marker in plasma of patients with cancers for detection of tumor occurrence and metastasis. Mouse monoclonal antibodies (mAb) against human PDPN were developed and characterized. Two anti-PDPN mAb, SZ-163 and SZ-168, were used in a sandwich ELISA to detect plasma sPDPN in patients with cancers and in normal individuals. The levels of sPDPN were detected in patients with adenocarcinoma (87 cases, 31.09 ± 5.48 ng/ml), squamous cell carcinoma (86 cases, 6.91 ± 0.59 ng/ml), lung cancer (45 cases, 26.10 ± 7.62 ng/ml), gastric cancer (38 cases, 23.71 ± 6.90 ng/ml) and rectal cancer (27 cases, 32.98 ± 9.88 ng/ml), which were significantly higher than those in normal individuals (99 cases, 1.31 ± 0.13 ng/ml) (P < .0001). Moreover, the sPDPN levels in patients with metastatic cancers were higher (192 cases, 30.35 ± 3.63 ng/ml) than those in non-metastatic cancer patients (92 cases, 6.28 ± 0.77 ng/ml) (P < .0001). The post-treatment sPDPN levels of cancer patients (n = 156) (4.47 ± 0.35 ng/ml) were significantly lower compared with those seen pre-treatment (n = 128) (43.74 ± 4.97 ng/ml) (P < .0001). These results showed that an ELISA method was successfully established for quantitation of plasma sPDPN and plasma sPDPN levels correlate significantly with tumor occurrence and metastasis.


Assuntos
Biomarcadores Tumorais/sangue , Glicoproteínas de Membrana/sangue , Neoplasias/diagnóstico , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA