Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702343

RESUMO

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos , Terapia Combinada , Vacinas de mRNA/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/administração & dosagem
2.
Hum Vaccin Immunother ; 20(1): 2334474, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38619081

RESUMO

To assess the pattern of multiple human papillomavirus infection to predict the type replacement postvaccination. A total of 7372 women aged 18-45y from a phase III trial of an Escherichia coli-produced HPV-16/18 vaccine were analyzed at enrollment visit before vaccination. Hierarchical multilevel logistic regression was used to evaluate HPV vaccine type and nonvaccine-type interactions with age as a covariate. Binary logistic regression was construed to compare multiple infections with single infections to explore the impact of multiple-type infections on the risk of cervical disease. Multiple HPV infections were observed in 25.2% of HPV-positive women and multiple infections were higher than expected by chance. Statistically significant negative associations were observed between HPV16 and 52, HPV18 and HPV51/52/58, HPV31 and HPV39/51/52/53/54/58, HPV33 and HPV52/58, HPV58 and HPV52, HPV6 and HPV 39/51/52/53/54/56/58. Multiple HPV infections increased the risk of CIN2+ and HSIL+, with the ORs of 2.27(95%CI: 1.41, 3.64) and 2.26 (95%CI: 1.29, 3.95) for multiple oncogenic HPV infection separately. However, no significant evidence for the type-type interactions on risk of CIN2+ or HSIL+. There is possibility of type replacement between several pairs of vaccine and nonvaccine HPV type. Multiple HPV infection increased the risk of cervical disease, but coinfection HPV types seem to follow independent disease processes. Continued post-vaccination surveillance for HPV 51/52/58 types and HPV 39/51 types separately was essential after the first and second generation of HPV vaccination implementation in China.


Assuntos
Alphapapillomavirus , Vacinas contra Escherichia coli , Papillomavirus Humano , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Feminino , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , China/epidemiologia , Papillomaviridae
3.
Cancer Immunol Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631019

RESUMO

The intrinsic pharmacokinetic limitations of traditional peptide-based cancer vaccines hamper effective cross-presentation and codelivery of antigens and adjuvants, which are crucial for inducing robust antitumor CD8+ T-cell responses. Here, we report the development of a versatile strategy that simultaneously addresses the different pharmacokinetic challenges of soluble subunit vaccines composed of antigens and CpG to modulate vaccine efficacy via translating an engineered chimeric peptide, eTAT, as an intramolecular adjuvant. Linking antigens to eTAT enhanced cytosolic delivery of the antigens. This, in turn, led to improved activation and lymph node-trafficking of antigen-presenting cells and antigen cross-presentation, thus promoting antigen-specific T-cell immune responses. Simple mixing of eTAT-linked antigens and CpG significantly enhanced codelivery of antigens and CpG to the antigen-presenting cells, and this substantially augmented the adjuvant effect of CpG, maximized vaccine immunogenicity and elicited robust and durable CD8+ T-cell responses. Vaccination with this formulation altered the tumor microenvironment and exhibited potent antitumor effects, with generally further enhanced therapeutic efficacy when used in combination with anti-PD1. Altogether, the engineered chimeric peptide-based orchestrated codelivery of antigen and adjuvant may serve as a promising but simple strategy to improve the efficacy of peptide-based cancer vaccines.

4.
J Med Virol ; 96(4): e29568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38549430

RESUMO

The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.


Assuntos
Vacinas Anticâncer , Herpesvirus Suídeo 1 , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Vírus Oncolíticos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Herpesvirus Suídeo 1/genética , Neoplasias Renais/terapia , Vírus Oncolíticos/genética , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Vacinas Atenuadas , Vacinas Anticâncer/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico
5.
Front Med ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453818

RESUMO

Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.

6.
J Hepatol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336347

RESUMO

BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.

7.
J Control Release ; 367: 13-26, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244843

RESUMO

The cGAS-STING pathway and the Mevalonate Pathway are druggable targets for vaccine adjuvant discovery. Manganese (Mn) and bisphosphonates are known to exert adjuvant effects by targeting these two pathways, respectively. This study found the synergistic potential of the two pathways in enhancing immune response. Risedronate (Ris) significantly amplified the Mn adjuvant early antibody response by 166-fold and fortified its cellular immunity. However, direct combination of Mn2+ and Ris resulted in increased adjuvant toxicity (40% mouse mortality). By the combination of doping property of hydroxyapatite (HA) and its high affinity for Ris, we designed Ris-functionalized Mn-HA micro-nanoparticles as an organic-inorganic hybrid adjuvant, named MnHARis. MnHARis alleviated adjuvant toxicity (100% vs. 60% survival rate) and exhibited good long-term stability. When formulated with the varicella-zoster virus glycoprotein E (gE) antigen, MnHARis triggered a 274.3-fold increase in IgG titers and a 61.3-fold surge in neutralization titers while maintaining a better long-term humoral immunity compared to the aluminum adjuvant. Its efficacy spanned other antigens, including ovalbumin, HPV18 VLP, and SARS-CoV-2 spike protein. Notably, the cellular immunity elicited by the group of gE + MnHARis was comparable to the renowned Shingrix®. Moreover, intratumoral co-administration with an anti-trophoblast cell surface antigen 2 nanobody revealed synergistic antitumor capabilities. These findings underscore the potential of MnHARis as a potent adjuvant for augmenting vaccine immune responses and improving cancer immunotherapy outcomes.


Assuntos
Manganês , Neoplasias , Glicoproteína da Espícula de Coronavírus , Camundongos , Humanos , Animais , Ácido Risedrônico , Durapatita , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Antígenos , Adjuvantes Farmacêuticos , Imunoterapia , Anticorpos Antivirais
8.
Nat Commun ; 15(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167274

RESUMO

PD-1 is a co-inhibitory receptor expressed by CD8+ T cells which limits their cytotoxicity. PD-L1 expression on cancer cells contributes to immune evasion by cancers, thus, understanding the mechanisms that regulate PD-L1 protein levels in cancers is important. Here we identify tumor-cell-expressed otubain-2 (OTUB2) as a negative regulator of antitumor immunity, acting through the PD-1/PD-L1 axis in various human cancers. Mechanistically, OTUB2 directly interacts with PD-L1 to disrupt the ubiquitination and degradation of PD-L1 in the endoplasmic reticulum. Genetic deletion of OTUB2 markedly decreases the expression of PD-L1 proteins on the tumor cell surface, resulting in increased tumor cell sensitivity to CD8+ T-cell-mediated cytotoxicity. To underscore relevance in human patients, we observe a significant correlation between OTUB2 expression and PD-L1 abundance in human non-small cell lung cancer. An inhibitor of OTUB2, interfering with its deubiquitinase activity without disrupting the OTUB2-PD-L1 interaction, successfully reduces PD-L1 expression in tumor cells and suppressed tumor growth. Together, these results reveal the roles of OTUB2 in PD-L1 regulation and tumor evasion and lays down the proof of principle for OTUB2 targeting as therapeutic strategy for cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Preparações Farmacêuticas/metabolismo , Tioléster Hidrolases/metabolismo
9.
Sci Bull (Beijing) ; 69(4): 512-525, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38160175

RESUMO

In vaccine development, broadly or cross-type neutralizing antibodies (bnAbs or cnAbs) are frequently targeted to enhance protection. Utilizing immunodominant antibodies could help fine-tune vaccine immunogenicity and augment the precision of immunization strategies. However, the methodologies to capitalize on the attributes of bnAbs in vaccine design have not been clearly elucidated. In this study, we discovered a cross-type neutralizing monoclonal antibody, 13H5, against human papillomavirus 6 (HPV6) and HPV11. This nAb exhibited a marked preference for HPV6, demonstrating superior binding activity to virus-like particles (VLPs) and significantly higher prevalence in anti-HPV6 human serum as compared to HPV11 antiserum (90% vs. 31%). Through co-crystal structural analysis of the HPV6 L1 pentamer:13H5 complex, we delineated the epitope as spanning four segments of amino acids (Phe42-Ala47, Gly172-Asp173, Glu255-Val275, and Val337-Tyr351) on the L1 surface loops. Further interaction analysis and site-directed mutagenesis revealed that the Ser341 residue in the HPV6 HI loop plays a critical role in the interaction between 13H5 and L1. Substituting Ser341 with alanine, which is the residue type present in HPV11 L1, almost completely abolished binding activity to 13H5. By swapping amino acids in the HPV11 HI loop with corresponding residues in HPV6 L1 (Ser341, Thr338, and Thr339), we engineered chimeric HPV11-6HI VLPs. Remarkably, the chimeric HPV11-6HI VLPs shifted the high immunodominance of 13H5 from HPV6 to the engineered VLPs and yielded comparable neutralization titers for both HPV6 and HPV11 in mice and non-human primates. This approach paves the way for the design of broadly protective vaccines from antibodies within the main immunization reservoir.


Assuntos
Vacinas contra Papillomavirus , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo/genética , Anticorpos Antivirais , Papillomavirus Humano 6 , Imunização , Aminoácidos
10.
J Clin Microbiol ; 61(12): e0071023, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38038482

RESUMO

The emergence of Rocahepevirus ratti [species HEV ratti (r HEV)] as a causative agent of hepatitis E in humans presents a new potential threat to global public health. The R. ratti genotype 1 (r-1 HEV) variant only shares 50%-60% genomic identity with Paslahepevirus balayani [species HEV balayani (b HEV)] variants, which are the main causes of hepatitis E infection in humans. Here, we report antigen diagnoses for r-1 HEV and b HEV using an enzymatic immunoassay (EIA) method. We detected recombinant virus-like particles protein (HEV 239) of r HEV and b HEV using a collection of hepatitis E virus (HEV)-specific monoclonal antibodies. Two optimal candidates, the capture antibody P#1-H4 and the detection antibodies C145 (P#1-H4*/C145#) and C158 (P#1-H4*/C158#), were selected to detect antigen in infected rat samples and r-1 HEV- or b HEV-infected human clinical samples. The two candidates showed similar diagnostic efficacy to the Wantai HEV antigen kit in b HEV-infected clinical samples. Genomic divergence resulted in low diagnostic efficacy of the Wantai HEV antigen kit (0%, 0 of 10) for detecting r-1 HEV infection. Compared with the P#1-H4*/C145# candidate (80%, 8 of 10), the P#1-H4*/C158# candidate had excellent diagnostic efficacy in r-1 HEV-infected clinical samples (100%, 10 of 10). The two candidates bind to a discrete antigenic site that is highly conserved across r HEV and b HEV. P#1-H4*/C145# and P#1-H4*/C158# are efficacious candidate antibody combinations for rat HEV antigen detection.


Assuntos
Vírus da Hepatite E , Hepatite E , Ratos , Humanos , Animais , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Técnicas Imunoenzimáticas , Testes Imunológicos
11.
Cell Rep ; 42(11): 113452, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976163

RESUMO

Major histocompatibility complex (MHC) class II-reactive CD8+ T cells are found in humans and animals, but little is known about their identity, development, and function. In this study, we discover a group of CD8+ T cells reactive to both MHC class I and II molecules in MHC class II-deficient mice. We clone their T cell receptors (TCRs) and analyze their development and function. In wild-type animals, thymocytes bearing those TCRs are purged by negative selection. In the absence of MHC class II, they develop into mature CD8+ T cells. When encountering MHC class II in the periphery, they undergo robust activation and proliferation, attack self-tissues, and cause lethal autoimmune diseases. In adoptive T cell therapy, those CD8+ T cells are able to efficiently control MHC class II-expressing tumors. This study opens the door to investigation of dual-reactive CD8+ T cells, their development and selection in the thymus, and the perils and promises when their normal development and selection are compromised.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Autoimunidade , Camundongos Transgênicos , Antígenos de Histocompatibilidade Classe II , Timo , Receptores de Antígenos de Linfócitos T , Imunoterapia , Camundongos Endogâmicos C57BL , Neoplasias/terapia
12.
Cell Rep Med ; 4(11): 101296, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992686

RESUMO

Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr , Vacinas , Animais , Camundongos , Proteínas do Envelope Viral/química , Glicoproteínas de Membrana , Herpesvirus Humano 4 , Proteínas Virais , Terapia Combinada de Anticorpos , Epitopos , Glicoproteínas , Anticorpos Neutralizantes/uso terapêutico
15.
J Exp Clin Cancer Res ; 42(1): 284, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891570

RESUMO

BACKGROUND: Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS: PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS: Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS: PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.


Assuntos
Herpesvirus Suídeo 1 , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Suínos , Camundongos , Vacinas Atenuadas , Camundongos Nus , Inibidores de Checkpoint Imunológico , Vírus Oncolíticos/genética , Receptores ErbB , Microambiente Tumoral
16.
Sci Bull (Beijing) ; 68(20): 2448-2455, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37743201

RESUMO

The Escherichia coli-produced human papillomavirus (HPV) 16/18 bivalent vaccine (Cecolin) has received prequalification by the World Health Organization based on its high efficacy and good safety profile. We aimed to evaluate the immunogenicity and safety of the second-generation nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine (Cecolin 9) through the randomized, blinded phase 2 clinical trial. Eligible healthy women aged 18-45 years were randomly (1:1) allocated to receive three doses of 1.0 mL (270 µg) of Cecolin 9 or placebo with a 0-1-6-month schedule. The primary endpoint was the seroconversion rate and geometric mean titer of neutralizing antibodies (nAbs) one month after the full vaccination course (month 7). The secondary endpoint was the safety profile including solicited adverse reactions occurring within 7 d, adverse events (AEs) occurring within 30 d after each dose, and serious adverse events (SAEs) occurring during the 7-month follow-up period. In total, 627 volunteers were enrolled and randomly assigned to Cecolin 9 (n = 313) or placebo (n = 314) group in Jiangsu Province, China. Almost all participants in the per-protocol set for immunogenicity (PPS-I) seroconverted for nAbs against all the nine HPV types at month 7, while two failed to seroconvert for HPV 11 and one did not seroconvert for HPV 52. The incidence rates of total AEs in the Cecolin 9 and placebo groups were 80.8% and 72.9%, respectively, with the majority of them being mild and recovering shortly. None of the SAEs were considered related to vaccination. In conclusion, the E. coli-produced 9-valent HPV (9vHPV) vaccine candidate was well tolerated and immunogenic, which warrants further efficacy studies in larger populations.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Feminino , Humanos , Anticorpos Neutralizantes , Escherichia coli , Papillomavirus Humano , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/efeitos adversos , Vacinas Combinadas , Vacinas de Partículas Semelhantes a Vírus/efeitos adversos , Método Duplo-Cego
17.
Emerg Microbes Infect ; 12(2): 2245920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542379

RESUMO

Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Coelhos , Humanos , Animais , Camundongos , Herpesvirus Humano 4/metabolismo , Anticorpos Neutralizantes , Glicoproteínas de Membrana/metabolismo , Proteínas Virais/metabolismo , Epitopos
18.
N Engl J Med ; 389(9): 808-819, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646678

RESUMO

BACKGROUND: Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS: We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS: P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS: Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).


Assuntos
Anticorpos Antivirais , Detecção Precoce de Câncer , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Virais , Humanos , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Herpesvirus Humano 4/imunologia , Imunoglobulina A , Programas de Rastreamento , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Estudos Prospectivos , Estudos Retrospectivos , Biomarcadores/análise , Proteínas Virais/imunologia , Epitopos/imunologia
19.
Expert Rev Vaccines ; 22(1): 681-695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496496

RESUMO

INTRODUCTION: Vaccines are powerful tools for controlling microbial infections and preventing epidemics. To enhance the immune response to antigens, effective subunit vaccines or mRNA vaccines often require the combination of adjuvants or delivery carriers. In recent years, with the rapid development of immune mechanism research and nanotechnology, various studies based on the optimization of traditional adjuvants or various novel carriers have been intensified, and the construction of vaccine adjuvant delivery systems (VADS) with both adjuvant activity and antigen delivery has become more and more important in vaccine research. AREAS COVERED: This paper reviews the common types of vaccine adjuvant delivery carriers, classifies the VADS according to their basic carrier types, introduces the current research status and future development trend, and emphasizes the important role of VADS in novel vaccine research. EXPERT OPINION: As the number of vaccine types increases, conventional aluminum adjuvants show limitations in effectively stimulating cellular immune responses, limiting their use in therapeutic vaccines for intracellular infections or tumors. In contrast, the use of conventional adjuvants as VADS to carry immunostimulatory molecules or deliver antigens can greatly enhance the immune boosting effect of classical adjuvants. A comprehensive understanding of the various delivery vehicles will further facilitate the development of vaccine adjuvant research.


Assuntos
Adjuvantes de Vacinas , Vacinas , Humanos , Sistemas de Liberação de Medicamentos , Adjuvantes Imunológicos , Imunização , Antígenos
20.
Lancet Infect Dis ; 23(11): 1313-1322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37475116

RESUMO

BACKGROUND: An Escherichia coli-produced human papillomavirus (HPV) 16 and 18 bivalent vaccine (Cecolin) was prequalified by WHO in 2021. This study aimed to compare the immunogenicity of the E coli-produced HPV 9-valent vaccine Cecolin 9 (against HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58) with Gardasil 9. METHODS: This was a randomised, single-blind trial conducted in China. Healthy non-pregnant women aged 18-26 years, who were not breastfeeding and with no HPV vaccination history, were enrolled in the Ganyu Centre for Disease Control and Prevention (Lianyungang City, Jiangsu Province, China). Women were stratified by age (18-22 years and 23-26 years) and randomly assigned (1:1) using a permutated block size of eight to receive three doses of Cecolin 9 or Gardasil 9 at day 0, day 45, and month 6. All participants, as well as study personnel without access to the vaccines, were masked. Neutralising antibodies were measured by a triple-colour pseudovirion-based neutralisation assay. The primary outcomes, seroconversion rates and geometric mean concentrations (GMCs) at month 7, were analysed in the per-protocol set for immunogenicity (PPS-I). Non-inferiority was identified for the lower limit of the 95% CI of the GMC ratio (Cecolin 9 vs Gardasil 9) at a margin of 0·5 and a seroconversion rate difference (Cecolin 9-Gardasil 9) at a margin of -5%. This study was registered at ClinicalTrials.gov (NCT04782895) and is completed. FINDINGS: From March 14 to 18, 2021, a total of 553 potential participants were screened, of which 244 received at least one dose of Cecolin 9 and 243 received at least one dose of Gardasil 9. The seroconversion rates for all HPV types in both groups were 100% in the PPS-I, with the values of the lower limits of 95% CIs for seroconversion rate differences ranging between -1·8% and -1·7%. The GMC ratios of five types were higher than 1·0, with the highest ratio, for HPV 58, at 1·65 (95% CI 1·38-1·97), and those of four types were lower than 1·0, with the lowest ratio, for HPV 11, at 0·79 (0·68-0·93). The incidence of adverse reactions in both groups was similar (43% [104/244] vs 47% [115/243]). INTERPRETATION: Cecolin 9 induced non-inferior HPV type-specific immune responses compared with Gardasil 9 and is a potential candidate to accelerate the elimination of cervical cancer by allowing for global accessibility to 9-valent HPV vaccinations, especially in low-income and middle-income countries. FUNDING: National Natural Science Foundation, Fujian Provincial Natural Science Foundation, Xiamen Science and Technology Plan Project, Fundamental Research Funds for the Central Universities, CAMS Innovation Fund for Medical Sciences of China, and Xiamen Innovax.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Feminino , Escherichia coli , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Método Simples-Cego , China , Imunogenicidade da Vacina , Anticorpos Antivirais , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA