Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(27): e202401373, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659181

RESUMO

Inorganic solid-state electrolytes (SSEs) play a vital role in high-energy all-solid-state batteries (ASSBs). However, the current method of SSE preparation usually involves high-energy mechanical ball milling and/or a high-temperature annealing process, which is not suitable for practical application. Here, a facile strategy is developed to realize the scalable synthesis of cost-effective aluminum-based oxyhalide SSEs, which involves a self-propagating method by the exothermic reaction of the raw materials. This strategy enables the synthesis of various aluminum-based oxyhalide SSEs with tunable components and high ionic conductivities (over 10-3 S cm-1 at 25 °C) for different cations (Li+, Na+, Ag+). It is elucidated that the amorphous matrix, which mainly consists of various oxidized chloroaluminate species that provide numerous sites for smooth ion migration, is actually the key factor for the achieved high conductivities. Benefit from their easy synthesis, low cost, and low weight, the aluminum-based oxyhalide SSEs synthesized by our approach could further promote practical application of high-energy-density ASSBs.

2.
J Photochem Photobiol B ; 220: 112214, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049181

RESUMO

We investigate the photon/matter interactions between soft X-rays and three selected polypeptides, poly-glycine (poly-Gly), poly-L-arginine (poly-Arg), and poly-l-lysine (poly-Lys), where the effects of molecular packing under the influence of solvent, e.g., water, substrates (Au foil or Si wafer) and X-ray irradiation under different durations were systematically investigated. Compared with negligible photo-damage on bare polypeptide powders, significantly enhanced degradation in pre-solvated polypeptides was observed likely because of the formation photo-generated radicals. X-ray photoemission spectroscopy (XPS) were employed as the analysis means to identify and quantify the chemical changes, especially the high-resolution photoemission spectra of C 1s, O 1s, N 1s and their evolution under continuous X-ray irradiation. The photo-degradation was found to preferentially occur on the CO entity in poly-Gly and the guanidinium group in poly-Arg. In poly-Arg, deprotonation occurs via the switch from zwittterionic to a neutral configuration, whereas poly-Lys deprotonates by directly losing the corresponding amine. The critical role of the interactions between amino acids, the building blocks of protein and almost all forms of biological activities, and the free-radical-generating living environment under irradiation was critically analyzed. The present study found that the preparation history of a sample, especially its inadvertent exposure to the sources of H2O, O2 and OH, could significantly alter the outcome of a radiation-related chemical process. Implications on the non-destructive probe of biologically important systems using physical methods involving X-rays were discussed as well.


Assuntos
Luz , Peptídeos/efeitos da radiação , Peptídeos/química , Espectroscopia Fotoeletrônica , Solubilidade , Raios X
3.
Phys Chem Chem Phys ; 22(22): 12630-12643, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32458842

RESUMO

The realization of a high efficiency water gas shift reaction (WGSR) at low temperatures has always been a research hotspot and is difficult to achieve. Based on NiCr layered double hydroxides (NiCr-LDHs), a hybrid NiO@NiCr-LDH was prepared by intercalation and surface complexing. The above materials were applied to WGSR at low temperatures, and the catalytic activity and reaction mechanism of WGSR with NiCr-LDHs and LDHs intercalated with organic metal ligands (NiCr-Ni/SB-LDHs) were compared. It was found that the activity of NiO@NiCr-LDHs was about 4 and 2 times higher than that of NiCr-LDHs and NiCr-Ni/SB-LDHs, respectively. At 150 °C, the CO conversion of NiO@NiCr-LDHs is 35.2%, the reaction rate is 19.71 µmol gcat-1 s-1, the TOF value is 0.225 s-1, and the activation energy is 77.4 kJ mol-1. In addition, the complexing NiO content has a great influence on the activity of NiO@NiCr-LDHs for WGSR. In addition, DFT calculations were used to compare the differences in the performance and catalytic mechanism of different nickel containing LDH catalysts for WGSR. According to the calculated results of relative energy barrier and activation energy, a possible reaction pathway and mechanism are discussed. The results show that compared with NiCr-LDHs and NiCr-Ni/SB-LDHs, NiO@NiCr-LDHs can effectively reduce the activation energy of the H2O dissociation step, which is the rate determining step of WGSR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA